Abstract:Large Language Models (LLMs) play a vital role in applications like conversational agents and content creation, where controlling a model's personality is crucial for maintaining tone, consistency, and engagement. However, traditional prompt-based techniques for controlling personality often fall short, as they do not effectively mitigate the model's inherent biases. In this paper, we introduce a novel method PALETTE that enhances personality control through knowledge editing. By generating adjustment queries inspired by psychological assessments, our approach systematically adjusts responses to personality-related queries similar to modifying factual knowledge, thereby achieving controlled shifts in personality traits. Experimental results from both automatic and human evaluations demonstrate that our method enables more stable and well-balanced personality control in LLMs.
Abstract:Cross-lingual summarization (XLS) aims to generate a summary in a target language different from the source language document. While large language models (LLMs) have shown promising zero-shot XLS performance, their few-shot capabilities on this task remain unexplored, especially for low-resource languages with limited parallel data. In this paper, we investigate the few-shot XLS performance of various models, including Mistral-7B-Instruct-v0.2, GPT-3.5, and GPT-4. Our experiments demonstrate that few-shot learning significantly improves the XLS performance of LLMs, particularly GPT-3.5 and GPT-4, in low-resource settings. However, the open-source model Mistral-7B-Instruct-v0.2 struggles to adapt effectively to the XLS task with limited examples. Our findings highlight the potential of few-shot learning for improving XLS performance and the need for further research in designing LLM architectures and pre-training objectives tailored for this task. We provide a future work direction to explore more effective few-shot learning strategies and to investigate the transfer learning capabilities of LLMs for cross-lingual summarization.