Abstract:Dialogue intent classification aims to identify the underlying purpose or intent of a user's input in a conversation. Current intent classification systems encounter considerable challenges, primarily due to the vast number of possible intents and the significant semantic overlap among similar intent classes. In this paper, we propose a novel approach to few-shot dialogue intent classification through in-context learning, incorporating dynamic label refinement to address these challenges. Our method retrieves relevant examples for a test input from the training set and leverages a large language model to dynamically refine intent labels based on semantic understanding, ensuring that intents are clearly distinguishable from one another. Experimental results demonstrate that our approach effectively resolves confusion between semantically similar intents, resulting in significantly enhanced performance across multiple datasets compared to baselines. We also show that our method generates more interpretable intent labels, and has a better semantic coherence in capturing underlying user intents compared to baselines.
Abstract:Retrieval-Augmented Generation (RAG) enhances language models by retrieving and incorporating relevant external knowledge. However, traditional retrieve-and-generate processes may not be optimized for real-world scenarios, where queries might require multiple retrieval steps or none at all. In this paper, we propose a Probing-RAG, which utilizes the hidden state representations from the intermediate layers of language models to adaptively determine the necessity of additional retrievals for a given query. By employing a pre-trained prober, Probing-RAG effectively captures the model's internal cognition, enabling reliable decision-making about retrieving external documents. Experimental results across five open-domain QA datasets demonstrate that Probing-RAG outperforms previous methods while reducing the number of redundant retrieval steps.
Abstract:Conversational search seeks to retrieve relevant passages for the given questions in Conversational QA (ConvQA). Questions in ConvQA face challenges such as omissions and coreferences, making it difficult to obtain desired search results. Conversational Query Reformulation (CQR) transforms these current queries into de-contextualized forms to resolve these issues. However, existing CQR methods focus on rewriting human-friendly queries, which may not always yield optimal search results for the retriever. To overcome this challenge, we introduce GuideCQR, a framework that utilizes guided documents to refine queries, ensuring that they are optimal for retrievers. Specifically, we augment keywords, generate expected answers from the re-ranked documents, and unify them with the filtering process. Experimental results show that queries enhanced by guided documents outperform previous CQR methods. Especially, GuideCQR surpasses the performance of Large Language Model (LLM) prompt-powered approaches and demonstrates the importance of the guided documents in formulating retriever-friendly queries across diverse setups.
Abstract:Query rewriting aims to generate a new query that can complement the original query to improve the information retrieval system. Recent studies on query rewriting, such as query2doc (Q2D), query2expand (Q2E) and querey2cot (Q2C), rely on the internal knowledge of Large Language Models (LLMs) to generate a relevant passage to add information to the query. Nevertheless, the efficacy of these methodologies may markedly decline in instances where the requisite knowledge is not encapsulated within the model's intrinsic parameters. In this paper, we propose a novel structured query rewriting method called Crafting the Path tailored for retrieval systems. Crafting the Path involves a three-step process that crafts query-related information necessary for finding the passages to be searched in each step. Specifically, the Crafting the Path begins with Query Concept Comprehension, proceeds to Query Type Identification, and finally conducts Expected Answer Extraction. Experimental results show that our method outperforms previous rewriting methods, especially in less familiar domains for LLMs. We demonstrate that our method is less dependent on the internal parameter knowledge of the model and generates queries with fewer factual inaccuracies. Furthermore, we observe that Crafting the Path has less latency compared to the baselines.
Abstract:Aspect-based sentiment analysis (ABSA) assesses sentiments towards specific aspects within texts, resulting in detailed sentiment tuples. Previous ABSA models often use static templates to predict all of the elements in the tuples, and these models often fail to accurately capture dependencies between elements. Multi-view prompting method improves the performance of ABSA by predicting tuples with various templates and then ensembling the results. However, this method suffers from inefficiencies and out-of-distribution errors. In this paper, we propose a Dynamic Order Template (DOT) method for ABSA, which dynamically generates necessary views for each instance based on instance-level entropy. Ensuring the diverse and relevant view generation, our proposed method improves F1-scores on ASQP and ACOS datasets while significantly reducing inference time.
Abstract:Cross-lingual summarization (XLS) aims to generate a summary in a target language different from the source language document. While large language models (LLMs) have shown promising zero-shot XLS performance, their few-shot capabilities on this task remain unexplored, especially for low-resource languages with limited parallel data. In this paper, we investigate the few-shot XLS performance of various models, including Mistral-7B-Instruct-v0.2, GPT-3.5, and GPT-4. Our experiments demonstrate that few-shot learning significantly improves the XLS performance of LLMs, particularly GPT-3.5 and GPT-4, in low-resource settings. However, the open-source model Mistral-7B-Instruct-v0.2 struggles to adapt effectively to the XLS task with limited examples. Our findings highlight the potential of few-shot learning for improving XLS performance and the need for further research in designing LLM architectures and pre-training objectives tailored for this task. We provide a future work direction to explore more effective few-shot learning strategies and to investigate the transfer learning capabilities of LLMs for cross-lingual summarization.
Abstract:Through the advent of pre-trained language models, there have been notable advancements in abstractive summarization systems. Simultaneously, a considerable number of novel methods for evaluating factual consistency in abstractive summarization systems has been developed. But these evaluation approaches incorporate substantial limitations, especially on refinement and interpretability. In this work, we propose highly effective and interpretable factual inconsistency detection method metric Factual Inconsistency Detection by Zoom-in Summary and Zoom-out Document for abstractive summarization systems that is based on fine-grained atomic facts decomposition. Moreover, we align atomic facts decomposed from the summary with the source document through adaptive granularity expansion. These atomic facts represent a more fine-grained unit of information, facilitating detailed understanding and interpretability of the summary's factual inconsistency. Experimental results demonstrate that our proposed factual consistency checking system significantly outperforms existing systems.
Abstract:As the integration of large language models into daily life is on the rise, there is a clear gap in benchmarks for advising on subjective and personal dilemmas. To address this, we introduce AdvisorQA, the first benchmark developed to assess LLMs' capability in offering advice for deeply personalized concerns, utilizing the LifeProTips subreddit forum. This forum features a dynamic interaction where users post advice-seeking questions, receiving an average of 8.9 advice per query, with 164.2 upvotes from hundreds of users, embodying a collective intelligence framework. Therefore, we've completed a benchmark encompassing daily life questions, diverse corresponding responses, and majority vote ranking to train our helpfulness metric. Baseline experiments validate the efficacy of AdvisorQA through our helpfulness metric, GPT-4, and human evaluation, analyzing phenomena beyond the trade-off between helpfulness and harmlessness. AdvisorQA marks a significant leap in enhancing QA systems for providing personalized, empathetic advice, showcasing LLMs' improved understanding of human subjectivity.
Abstract:Sarcasm is a way of verbal irony where someone says the opposite of what they mean, often to ridicule a person, situation, or idea. It is often difficult to detect sarcasm in the dialogue since detecting sarcasm should reflect the context (i.e., dialogue history). In this paper, we introduce a new dataset for the Korean dialogue sarcasm detection task, KoCoSa (Korean Context-aware Sarcasm Detection Dataset), which consists of 12.8K daily Korean dialogues and the labels for this task on the last response. To build the dataset, we propose an efficient sarcasm detection dataset generation pipeline: 1) generating new sarcastic dialogues from source dialogues with large language models, 2) automatic and manual filtering of abnormal and toxic dialogues, and 3) human annotation for the sarcasm detection task. We also provide a simple but effective baseline for the Korean sarcasm detection task trained on our dataset. Experimental results on the dataset show that our baseline system outperforms strong baselines like large language models, such as GPT-3.5, in the Korean sarcasm detection task. We show that the sarcasm detection task relies deeply on the existence of sufficient context. We will release the dataset at https://anonymous.4open.science/r/KoCoSa-2372.
Abstract:In conversational search, which aims to retrieve passages containing essential information, queries suffer from high dependency on the preceding dialogue context. Therefore, reformulating conversational queries into standalone forms is essential for the effective utilization of off-the-shelf retrievers. Previous methodologies for conversational query search frequently depend on human-annotated gold labels. However, these manually crafted queries often result in sub-optimal retrieval performance and require high collection costs. In response to these challenges, we propose Iterative Conversational Query Reformulation (IterCQR), a methodology that conducts query reformulation without relying on human oracles. IterCQR iteratively trains the QR model by directly leveraging signal from information retrieval (IR) as a reward. Our proposed IterCQR method shows state-of-the-art performance on two datasets, demonstrating its effectiveness on both sparse and dense retrievers. Notably, IterCQR exhibits robustness in domain-shift, low-resource, and topic-shift scenarios.