Abstract:We introduce ElastiFormer, a post-training technique that adapts pretrained Transformer models into an elastic counterpart with variable inference time compute. ElastiFormer introduces small routing modules (as low as .00006% additional trainable parameters) to dynamically selects subsets of network parameters and input tokens to be processed by each layer of the pretrained network in an inputdependent manner. The routing modules are trained using self-distillation losses to minimize the differences between the output of the pretrained-model and their elastic counterparts. As ElastiFormer makes no assumption regarding the modality of the pretrained Transformer model, it can be readily applied to all modalities covering causal language modeling, image modeling as well as visual-language modeling tasks. We show that 20% to 50% compute saving could be achieved for different components of the transformer layer, which could be further reduced by adding very low rank LoRA weights (rank 1) trained via the same distillation objective. Finally, by comparing routing trained on different subsets of ImageNet, we show that ElastiFormer is robust against the training domain.
Abstract:We propose TRAMBA, a hybrid transformer and Mamba architecture for acoustic and bone conduction speech enhancement, suitable for mobile and wearable platforms. Bone conduction speech enhancement has been impractical to adopt in mobile and wearable platforms for several reasons: (i) data collection is labor-intensive, resulting in scarcity; (ii) there exists a performance gap between state of-art models with memory footprints of hundreds of MBs and methods better suited for resource-constrained systems. To adapt TRAMBA to vibration-based sensing modalities, we pre-train TRAMBA with audio speech datasets that are widely available. Then, users fine-tune with a small amount of bone conduction data. TRAMBA outperforms state-of-art GANs by up to 7.3% in PESQ and 1.8% in STOI, with an order of magnitude smaller memory footprint and an inference speed up of up to 465 times. We integrate TRAMBA into real systems and show that TRAMBA (i) improves battery life of wearables by up to 160% by requiring less data sampling and transmission; (ii) generates higher quality voice in noisy environments than over-the-air speech; (iii) requires a memory footprint of less than 20.0 MB.
Abstract:Existing multi-agent coordination techniques are often fragile and vulnerable to anomalies such as agent attrition and communication disturbances, which are quite common in the real-world deployment of systems like field robotics. To better prepare these systems for the real world, we present a graph neural network (GNN)-based multi-agent reinforcement learning (MARL) method for resilient distributed coordination of a multi-robot system. Our method, Multi-Agent Graph Embedding-based Coordination (MAGEC), is trained using multi-agent proximal policy optimization (PPO) and enables distributed coordination around global objectives under agent attrition, partial observability, and limited or disturbed communications. We use a multi-robot patrolling scenario to demonstrate our MAGEC method in a ROS 2-based simulator and then compare its performance with prior coordination approaches. Results demonstrate that MAGEC outperforms existing methods in several experiments involving agent attrition and communication disturbance, and provides competitive results in scenarios without such anomalies.
Abstract:Human emotion understanding is pivotal in making conversational technology mainstream. We view speech emotion understanding as a perception task which is a more realistic setting. With varying contexts (languages, demographics, etc.) different share of people perceive the same speech segment as a non-unanimous emotion. As part of the ACM Multimedia 2023 Computational Paralinguistics ChallengE (ComParE) in the EMotion Share track, we leverage their rich dataset of multilingual speakers and multi-label regression target of 'emotion share' or perception of that emotion. We demonstrate that the training scheme of different foundation models dictates their effectiveness for tasks beyond speech recognition, especially for non-semantic speech tasks like emotion understanding. This is a very complex task due to multilingual speakers, variability in the target labels, and inherent imbalance in the regression dataset. Our results show that HuBERT-Large with a self-attention-based light-weight sequence model provides 4.6% improvement over the reported baseline.