Abstract:The rapid growth of AI, data-intensive science, and digital twin technologies has driven an unprecedented demand for high-performance computing (HPC) across the research ecosystem. While national laboratories and industrial hyperscalers have invested heavily in exascale and GPU-centric architectures, university-operated HPC systems remain comparatively under-resourced. This survey presents a comprehensive assessment of the HPC landscape across U.S. universities, benchmarking their capabilities against Department of Energy (DOE) leadership-class systems and industrial AI infrastructures. We examine over 50 premier research institutions, analyzing compute capacity, architectural design, governance models, and energy efficiency. Our findings reveal that university clusters, though vital for academic research, exhibit significantly lower growth trajectories (CAGR $\approx$ 18%) than their national ($\approx$ 43%) and industrial ($\approx$ 78%) counterparts. The increasing skew toward GPU-dense AI workloads has widened the capability gap, highlighting the need for federated computing, idle-GPU harvesting, and cost-sharing models. We also identify emerging paradigms, such as decentralized reinforcement learning, as promising opportunities for democratizing AI training within campus environments. Ultimately, this work provides actionable insights for academic leaders, funding agencies, and technology partners to ensure more equitable and sustainable HPC access in support of national research priorities.
Abstract:Existing multi-agent coordination techniques are often fragile and vulnerable to anomalies such as agent attrition and communication disturbances, which are quite common in the real-world deployment of systems like field robotics. To better prepare these systems for the real world, we present a graph neural network (GNN)-based multi-agent reinforcement learning (MARL) method for resilient distributed coordination of a multi-robot system. Our method, Multi-Agent Graph Embedding-based Coordination (MAGEC), is trained using multi-agent proximal policy optimization (PPO) and enables distributed coordination around global objectives under agent attrition, partial observability, and limited or disturbed communications. We use a multi-robot patrolling scenario to demonstrate our MAGEC method in a ROS 2-based simulator and then compare its performance with prior coordination approaches. Results demonstrate that MAGEC outperforms existing methods in several experiments involving agent attrition and communication disturbance, and provides competitive results in scenarios without such anomalies.
Abstract:Multi-agent patrolling is a key problem in a variety of domains such as intrusion detection, area surveillance, and policing which involves repeated visits by a group of agents to specified points in an environment. While the problem is well-studied, most works either do not consider agent attrition or impose significant communication requirements to enable adaptation. In this work, we present the Adaptive Heuristic-based Patrolling Algorithm, which is capable of adaptation to agent loss using minimal communication by taking advantage of Voronoi partitioning. Additionally, we provide new centralized and distributed mathematical programming formulations of the patrolling problem, analyze the properties of Voronoi partitioning, and show the value of our adaptive heuristic algorithm by comparison with various benchmark algorithms using a realistic simulation environment based on the Robot Operating System (ROS) 2.