Abstract:Millimeter wave radar is gaining traction recently as a promising modality for enabling pervasive and privacy-preserving gesture recognition. However, the lack of rich and fine-grained radar datasets hinders progress in developing generalized deep learning models for gesture recognition across various user postures (e.g., standing, sitting), positions, and scenes. To remedy this, we resort to designing a software pipeline that exploits wealthy 2D videos to generate realistic radar data, but it needs to address the challenge of simulating diversified and fine-grained reflection properties of user gestures. To this end, we design G3R with three key components: (i) a gesture reflection point generator expands the arm's skeleton points to form human reflection points; (ii) a signal simulation model simulates the multipath reflection and attenuation of radar signals to output the human intensity map; (iii) an encoder-decoder model combines a sampling module and a fitting module to address the differences in number and distribution of points between generated and real-world radar data for generating realistic radar data. We implement and evaluate G3R using 2D videos from public data sources and self-collected real-world radar data, demonstrating its superiority over other state-of-the-art approaches for gesture recognition.
Abstract:The objective of this study is to develop natural language processing (NLP) models that can analyze patients' drug reviews and accurately classify their satisfaction levels as positive, neutral, or negative. Such models would reduce the workload of healthcare professionals and provide greater insight into patients' quality of life, which is a critical indicator of treatment effectiveness. To achieve this, we implemented and evaluated several classification models, including a BERT base model, Bio+Clinical BERT, and a simpler CNN. Results indicate that the medical domain-specific Bio+Clinical BERT model significantly outperformed the general domain base BERT model, achieving macro f1 and recall score improvement of 11%, as shown in Table 2. Future research could explore how to capitalize on the specific strengths of each model. Bio+Clinical BERT excels in overall performance, particularly with medical jargon, while the simpler CNN demonstrates the ability to identify crucial words and accurately classify sentiment in texts with conflicting sentiments.