Abstract:In this paper, we present a novel approach for joint activity detection (AD), channel estimation (CE), and data detection (DD) in uplink grant-free non-orthogonal multiple access (NOMA) systems. Our approach employs an iterative and parallel interference removal strategy inspired by parallel interference cancellation (PIC), enhanced with deep learning to jointly tackle the AD, CE, and DD problems. Based on this approach, we develop three PIC frameworks, each of which is designed for either coherent or non-coherence schemes. The first framework performs joint AD and CE using received pilot signals in the coherent scheme. Building upon this framework, the second framework utilizes both the received pilot and data signals for CE, further enhancing the performances of AD, CE, and DD in the coherent scheme. The third framework is designed to accommodate the non-coherent scheme involving a small number of data bits, which simultaneously performs AD and DD. Through joint loss functions and interference cancellation modules, our approach supports end-to-end training, contributing to enhanced performances of AD, CE, and DD for both coherent and non-coherent schemes. Simulation results demonstrate the superiority of our approach over traditional techniques, exhibiting enhanced performances of AD, CE, and DD while maintaining lower computational complexity.
Abstract:This paper presents a robust beam alignment technique for millimeter-wave communications in low signal-to-noise ratio (SNR) environments. The core strategy of our technique is to repeatedly transmit the most probable beam candidates to reduce beam misalignment probability induced by noise. Specifically, for a given beam training overhead, both the selection of candidates and the number of repetitions for each beam candidate are optimized based on channel prior information. To achieve this, a deep neural network is employed to learn the prior probability of the optimal beam at each location. The beam misalignment probability is then analyzed based on the channel prior, forming the basis for an optimization problem aimed at minimizing the analyzed beam misalignment probability. A closed-form solution is derived for a special case with two beam candidates, and an efficient algorithm is developed for general cases with multiple beam candidates. Simulation results using the DeepMIMO dataset demonstrate the superior performance of our technique in dynamic low-SNR communication environments when compared to existing beam alignment techniques.
Abstract:In this paper, we propose a novel joint source-channel coding (JSCC) approach for channel-adaptive digital semantic communications. In semantic communication systems with digital modulation and demodulation, end-to-end training and robust design of JSCC encoder and decoder becomes challenging due to the nonlinearity of modulation and demodulation processes, as well as diverse channel conditions and modulation orders. To address this challenge, we first develop a new demodulation method which assesses the uncertainty of the demodulation output to improve the robustness of the digital semantic communication system. We then devise a robust training strategy that facilitates end-to-end training of the JSCC encoder and decoder, while enhancing their robustness and flexibility. To this end, we model the relationship between the encoder's output and decoder's input using binary symmetric erasure channels and then sample the parameters of these channels from diverse distributions. We also develop a channel-adaptive modulation technique for an inference phase, in order to reduce the communication latency while maintaining task performance. In this technique, we adaptively determine modulation orders for the latent variables based on channel conditions. Using simulations, we demonstrate the superior performance of the proposed JSCC approach for both image classification and reconstruction tasks compared to existing JSCC approaches.
Abstract:This paper presents a novel split learning (SL) framework, referred to as SplitMAC, which reduces the latency of SL by leveraging simultaneous uplink transmission over multiple access channels. The key strategy is to divide devices into multiple groups and allow the devices within the same group to simultaneously transmit their smashed data and device-side models over the multiple access channels. The optimization problem of device grouping to minimize SL latency is formulated, and the benefit of device grouping in reducing the uplink latency of SL is theoretically derived. By examining a two-device grouping case, two asymptotically-optimal algorithms are devised for device grouping in low and high signal-to-noise ratio (SNR) scenarios, respectively, while providing proofs of their optimality. By merging these algorithms, a near-optimal device grouping algorithm is proposed to cover a wide range of SNR. Simulation results demonstrate that our SL framework with the proposed device grouping algorithm is superior to existing SL frameworks in reducing SL latency.
Abstract:In this paper, a communication-efficient federated learning (FL) framework is proposed for improving the convergence rate of FL under a limited uplink capacity. The central idea of the proposed framework is to transmit the values and positions of the top-$S$ entries of a local model update for uplink transmission. A lossless encoding technique is considered for transmitting the positions of these entries, while a linear transformation followed by the Lloyd-Max scalar quantization is considered for transmitting their values. For an accurate reconstruction of the top-$S$ values, a linear minimum mean squared error method is developed based on the Bussgang decomposition. Moreover, an error feedback strategy is introduced to compensate for both compression and reconstruction errors. The convergence rate of the proposed framework is analyzed for a non-convex loss function with consideration of the compression and reconstruction errors. From the analytical result, the key parameters of the proposed framework are optimized for maximizing the convergence rate for the given capacity. Simulation results on the MNIST and CIFAR-10 datasets demonstrate that the proposed framework outperforms state-of-the-art FL frameworks in terms of classification accuracy under the limited uplink capacity.
Abstract:This paper proposes a novel communication-efficient split learning (SL) framework, named SplitFC, which reduces the communication overhead required for transmitting intermediate feature and gradient vectors during the SL training process. The key idea of SplitFC is to leverage different dispersion degrees exhibited in the columns of the matrices. SplitFC incorporates two compression strategies: (i) adaptive feature-wise dropout and (ii) adaptive feature-wise quantization. In the first strategy, the intermediate feature vectors are dropped with adaptive dropout probabilities determined based on the standard deviation of these vectors. Then, by the chain rule, the intermediate gradient vectors associated with the dropped feature vectors are also dropped. In the second strategy, the non-dropped intermediate feature and gradient vectors are quantized using adaptive quantization levels determined based on the ranges of the vectors. To minimize the quantization error, the optimal quantization levels of this strategy are derived in a closed-form expression. Simulation results on the MNIST, CIFAR-10, and CelebA datasets demonstrate that SplitFC provides more than a 5.6% increase in classification accuracy compared to state-of-the-art SL frameworks, while they require 320 times less communication overhead compared to the vanilla SL framework without compression.
Abstract:In this paper, a new communication-efficient federated learning (FL) framework is proposed, inspired by vector quantized compressed sensing. The basic strategy of the proposed framework is to compress the local model update at each device by applying dimensionality reduction followed by vector quantization. Subsequently, the global model update is reconstructed at a parameter server (PS) by applying a sparse signal recovery algorithm to the aggregation of the compressed local model updates. By harnessing the benefits of both dimensionality reduction and vector quantization, the proposed framework effectively reduces the communication overhead of local update transmissions. Both the design of the vector quantizer and the key parameters for the compression are optimized so as to minimize the reconstruction error of the global model update under the constraint of wireless link capacity. By considering the reconstruction error, the convergence rate of the proposed framework is also analyzed for a smooth loss function. Simulation results on the MNIST and CIFAR-10 datasets demonstrate that the proposed framework provides more than a 2.5% increase in classification accuracy compared to state-of-art FL frameworks when the communication overhead of the local model update transmission is less than 0.1 bit per local model entry.
Abstract:In this paper, we present a communication-efficient federated learning framework inspired by quantized compressed sensing. The presented framework consists of gradient compression for wireless devices and gradient reconstruction for a parameter server (PS). Our strategy for gradient compression is to sequentially perform block sparsification, dimensional reduction, and quantization. Thanks to gradient sparsification and quantization, our strategy can achieve a higher compression ratio than one-bit gradient compression. For accurate aggregation of the local gradients from the compressed signals at the PS, we put forth an approximate minimum mean square error (MMSE) approach for gradient reconstruction using the expectation-maximization generalized-approximate-message-passing (EM-GAMP) algorithm. Assuming Bernoulli Gaussian-mixture prior, this algorithm iteratively updates the posterior mean and variance of local gradients from the compressed signals. We also present a low-complexity approach for the gradient reconstruction. In this approach, we use the Bussgang theorem to aggregate local gradients from the compressed signals, then compute an approximate MMSE estimate of the aggregated gradient using the EM-GAMP algorithm. We also provide a convergence rate analysis of the presented framework. Using the MNIST dataset, we demonstrate that the presented framework achieves almost identical performance with the case that performs no compression, while significantly reducing communication overhead for federated learning.