Abstract:Large language models have demonstrated excellent performance in many tasks, including Text-to-SQL, due to their powerful in-context learning capabilities. They are becoming the mainstream approach for Text-to-SQL. However, these methods still have a significant gap compared to human performance, especially on complex questions. As the complexity of questions increases, the gap between questions and SQLs increases. We identify two important gaps: the structural mapping gap and the lexical mapping gap. To tackle these two gaps, we propose PAS-SQL, an efficient SQL generation pipeline based on LLMs, which alleviates gaps through Abstract Query Pattern (AQP) and Contextual Schema Markup (CSM). AQP aims to obtain the structural pattern of the question by removing database-related information, which enables us to find structurally similar demonstrations. CSM aims to associate database-related text span in the question with specific tables or columns in the database, which alleviates the lexical mapping gap. Experimental results on the Spider and BIRD datasets demonstrate the effectiveness of our proposed method. Specifically, PAS-SQL + GPT-4o sets a new state-of-the-art on the Spider benchmark with an execution accuracy of 87.9\%, and achieves leading results on the BIRD dataset with an execution accuracy of 64.67\%.
Abstract:In recent years, knowledge graph completion (KGC) models based on pre-trained language model (PLM) have shown promising results. However, the large number of parameters and high computational cost of PLM models pose challenges for their application in downstream tasks. This paper proposes a progressive distillation method based on masked generation features for KGC task, aiming to significantly reduce the complexity of pre-trained models. Specifically, we perform pre-distillation on PLM to obtain high-quality teacher models, and compress the PLM network to obtain multi-grade student models. However, traditional feature distillation suffers from the limitation of having a single representation of information in teacher models. To solve this problem, we propose masked generation of teacher-student features, which contain richer representation information. Furthermore, there is a significant gap in representation ability between teacher and student. Therefore, we design a progressive distillation method to distill student models at each grade level, enabling efficient knowledge transfer from teachers to students. The experimental results demonstrate that the model in the pre-distillation stage surpasses the existing state-of-the-art methods. Furthermore, in the progressive distillation stage, the model significantly reduces the model parameters while maintaining a certain level of performance. Specifically, the model parameters of the lower-grade student model are reduced by 56.7\% compared to the baseline.