Abstract:Toward robust malware detection, we explore the attack surface of existing malware detection systems. We conduct root-cause analyses of the practical binary-level black-box adversarial malware examples. Additionally, we uncover the sensitivity of volatile features within the detection engines and exhibit their exploitability. Highlighting volatile information channels within the software, we introduce three software pre-processing steps to eliminate the attack surface, namely, padding removal, software stripping, and inter-section information resetting. Further, to counter the emerging section injection attacks, we propose a graph-based section-dependent information extraction scheme for software representation. The proposed scheme leverages aggregated information within various sections in the software to enable robust malware detection and mitigate adversarial settings. Our experimental results show that traditional malware detection models are ineffective against adversarial threats. However, the attack surface can be largely reduced by eliminating the volatile information. Therefore, we propose simple-yet-effective methods to mitigate the impacts of binary manipulation attacks. Overall, our graph-based malware detection scheme can accurately detect malware with an area under the curve score of 88.32\% and a score of 88.19% under a combination of binary manipulation attacks, exhibiting the efficiency of our proposed scheme.
Abstract:Test-time adversarial attacks have posed serious challenges to the robustness of machine learning models, and in many settings the adversarial manipulation needs not be bounded by small $\ell_p$-norms. Motivated by semantic-preserving attacks in security domain, we investigate logical adversaries, a broad class of attackers who create adversarial examples within a reflexive-transitive closure of a logical relation. We analyze the conditions for robustness and propose normalize-and-predict -- a learning framework with provable robustness guarantee. We compare our approach with adversarial training and derive a unified framework that provides the benefits of both approaches.Driven by the theoretical findings, we apply our framework to malware detection. We use our framework to learn new detectors and propose two generic logical attacks to validate model robustness. Experiment results on real-world data set show that attacks using logical relations can evade existing detectors, and our unified framework can significantly enhance model robustness.
Abstract:Adversarial examples have received a great deal of recent attention because of their potential to uncover security flaws in machine learning systems. However, most prior work on adversarial examples has been on parametric classifiers, for which generic attack and defense methods are known; non-parametric methods have been only considered on an ad-hoc or classifier-specific basis. In this work, we take a holistic look at adversarial examples for non-parametric methods. We first provide a general region-based attack that applies to a wide range of classifiers, including nearest neighbors, decision trees, and random forests. Motivated by the close connection between non-parametric methods and the Bayes Optimal classifier, we next exhibit a robust analogue to the Bayes Optimal, and we use it to motivate a novel and generic defense that we call adversarial pruning. We empirically show that the region-based attack and adversarial pruning defense are either better than or competitive with existing attacks and defenses for non-parametric methods, while being considerably more generally applicable.
Abstract:We consider data poisoning attacks, where an adversary can modify a small fraction of training data, with the goal of forcing the trained classifier to have low accuracy. While a body of prior work has developed many attacks and defenses, there is not much general understanding on when various attacks and defenses are effective. In this work, we undertake a rigorous study of defenses against data poisoning in online learning. First, we theoretically analyze four standard defenses and show conditions under which they are effective. Second, motivated by our analysis, we introduce powerful attacks against data-dependent defenses when the adversary can attack the dataset used to initialize them. Finally, we carry out an experimental study which confirms our theoretical findings, shows that the Slab defense is relatively robust, and demonstrates that defenses of moderate strength result in the highest classification accuracy overall.
Abstract:We consider data poisoning attacks, a class of adversarial attacks on machine learning where an adversary has the power to alter a small fraction of the training data in order to make the trained classifier satisfy certain objectives. While there has been much prior work on data poisoning, most of it is in the offline setting, and attacks for online learning, where training data arrives in a streaming manner, are not well understood. In this work, we initiate a systematic investigation of data poisoning attacks for online learning. We formalize the problem into two settings, and we propose a general attack strategy, formulated as an optimization problem, that applies to both with some modifications. We propose three solution strategies, and perform extensive experimental evaluation. Finally, we discuss the implications of our findings for building successful defenses.
Abstract:Motivated by safety-critical applications, test-time attacks on classifiers via adversarial examples has recently received a great deal of attention. However, there is a general lack of understanding on why adversarial examples arise; whether they originate due to inherent properties of data or due to lack of training samples remains ill-understood. In this work, we introduce a theoretical framework analogous to bias-variance theory for understanding these effects. We use our framework to analyze the robustness of a canonical non-parametric classifier - the k-nearest neighbors. Our analysis shows that its robustness properties depend critically on the value of k - the classifier may be inherently non-robust for small k, but its robustness approaches that of the Bayes Optimal classifier for fast-growing k. We propose a novel modified 1-nearest neighbor classifier, and guarantee its robustness in the large sample limit. Our experiments suggest that this classifier may have good robustness properties even for reasonable data set sizes.
Abstract:Many modern databases include personal and sensitive correlated data, such as private information on users connected together in a social network, and measurements of physical activity of single subjects across time. However, differential privacy, the current gold standard in data privacy, does not adequately address privacy issues in this kind of data. This work looks at a recent generalization of differential privacy, called Pufferfish, that can be used to address privacy in correlated data. The main challenge in applying Pufferfish is a lack of suitable mechanisms. We provide the first mechanism -- the Wasserstein Mechanism -- which applies to any general Pufferfish framework. Since this mechanism may be computationally inefficient, we provide an additional mechanism that applies to some practical cases such as physical activity measurements across time, and is computationally efficient. Our experimental evaluations indicate that this mechanism provides privacy and utility for synthetic as well as real data in two separate domains.