Abstract:Decoding language information from brain signals represents a vital research area within brain-computer interfaces, particularly in the context of deciphering the semantic information from the fMRI signal. However, many existing efforts concentrate on decoding small vocabulary sets, leaving space for the exploration of open vocabulary continuous text decoding. In this paper, we introduce a novel method, the \textbf{Brain Prompt GPT (BP-GPT)}. By using the brain representation that is extracted from the fMRI as a prompt, our method can utilize GPT-2 to decode fMRI signals into stimulus text. Further, we introduce a text-to-text baseline and align the fMRI prompt to the text prompt. By introducing the text-to-text baseline, our BP-GPT can extract a more robust brain prompt and promote the decoding of pre-trained LLM. We evaluate our BP-GPT on the open-source auditory semantic decoding dataset and achieve a significant improvement up to $4.61\%$ on METEOR and $2.43\%$ on BERTScore across all the subjects compared to the state-of-the-art method. The experimental results demonstrate that using brain representation as a prompt to further drive LLM for auditory neural decoding is feasible and effective.
Abstract:A backdoor attack allows a malicious user to manipulate the environment or corrupt the training data, thus inserting a backdoor into the trained agent. Such attacks compromise the RL system's reliability, leading to potentially catastrophic results in various key fields. In contrast, relatively limited research has investigated effective defenses against backdoor attacks in RL. This paper proposes the Recovery Triggered States (RTS) method, a novel approach that effectively protects the victim agents from backdoor attacks. RTS involves building a surrogate network to approximate the dynamics model. Developers can then recover the environment from the triggered state to a clean state, thereby preventing attackers from activating backdoors hidden in the agent by presenting the trigger. When training the surrogate to predict states, we incorporate agent action information to reduce the discrepancy between the actions taken by the agent on predicted states and the actions taken on real states. RTS is the first approach to defend against backdoor attacks in a single-agent setting. Our results show that using RTS, the cumulative reward only decreased by 1.41% under the backdoor attack.
Abstract:Temporal action localization (TAL) is a prevailing task due to its great application potential. Existing works in this field mainly suffer from two weaknesses: (1) They often neglect the multi-label case and only focus on temporal modeling. (2) They ignore the semantic information in class labels and only use the visual information. To solve these problems, we propose a novel Co-Occurrence Relation Module (CORM) that explicitly models the co-occurrence relationship between actions. Besides the visual information, it further utilizes the semantic embeddings of class labels to model the co-occurrence relationship. The CORM works in a plug-and-play manner and can be easily incorporated with the existing sequence models. By considering both visual and semantic co-occurrence, our method achieves high multi-label relationship modeling capacity. Meanwhile, existing datasets in TAL always focus on low-semantic atomic actions. Thus we construct a challenging multi-label dataset UCF-Crime-TAL that focuses on high-semantic actions by annotating the UCF-Crime dataset at frame level and considering the semantic overlap of different events. Extensive experiments on two commonly used TAL datasets, \textit{i.e.}, MultiTHUMOS and TSU, and our newly proposed UCF-Crime-TAL demenstrate the effectiveness of the proposed CORM, which achieves state-of-the-art performance on these datasets.
Abstract:With the improvements of Los Angeles in many aspects, people in mounting numbers tend to live or travel to the city. The primary objective of this paper is to apply a set of methods for the time series analysis of traffic accidents in Los Angeles in the past few years. The number of traffic accidents, collected from 2010 to 2019 monthly reveals that the traffic accident happens seasonally and increasing with fluctuation. This paper utilizes the ensemble methods to combine several different methods to model the data from various perspectives, which can lead to better forecasting accuracy. The IMA(1, 1), ETS(A, N, A), and two models with Fourier items are failed in independence assumption checking. However, the Online Gradient Descent (OGD) model generated by the ensemble method shows the perfect fit in the data modeling, which is the state-of-the-art model among our candidate models. Therefore, it can be easier to accurately forecast future traffic accidents based on previous data through our model, which can help designers to make better plans.