Abstract:Wireless backhaul offers a more cost-effective, time-efficient, and reconfigurable solution than wired backhaul to connect the edge-computing cells to the core network. As the amount of transmitted data increases, the low-rank characteristic of Line-of-Sight (LoS) channel severely limits the growth of channel capacity in the point-to-point backhaul transmission scenario. Orbital Angular Momentum (OAM), also known as vortex beam, is considered a potentially effective solution for high-capacity LoS wireless transmission. However, due to the shortcomings of its energy divergence and the specificity of multi-mode divergence angles, OAM beams have been difficult to apply in practical communication systems for a long time. In this work, a novel multi-mode convergent transmission with co-scale reception scheme is proposed. OAM beams of different modes can be transmitted with the same beam divergent angle, while the wavefronts are tailored by the ring-shaped Airy compensation lens during propagation, so that the energy will converge to the same spatial area for receiving. Based on this scheme, not only is the Signal-to-Noise Ratio (SNR) greatly improved, but it is also possible to simultaneously receive and demodulate OAM channels multiplexed with different modes in a limited space area. Through prototype experiments, we demonstrated that 3 kinds of OAM modes are tunable, and different channels can be separated simultaneously with receiving power increasing. The measurement isolations between channels are over 11 dB, which ensures a reliable 16-QAM multiplexing wireless transmission demo system. This work may explore the potential applications of OAM-based multi-mode convergent transmission in LoS wireless communications.
Abstract:The image model method has been widely used to simulate room impulse responses and the endeavor to adapt this method to different applications has also piqued great interest over the last few decades. This paper attempts to extend the image model method and develops an anchor-point-image-model (APIM) approach as a solution for simulating impulse responses by including both the source radiation and sensor directivity patterns. To determine the orientations of all the virtual sources, anchor points are introduced to real sources, which subsequently lead to the determination of the orientations of the virtual sources. An algorithm is developed to generate room impulse responses with APIM by taking into account the directional pattern functions, factional time delays, as well as the computational complexity. The developed model and algorithms can be used in various acoustic problems to simulate room acoustics and improve and evaluate processing algorithms.