Abstract:Disordered speech recognition profound implications for improving the quality of life for individuals afflicted with, for example, dysarthria. Dysarthric speech recognition encounters challenges including limited data, substantial dissimilarities between dysarthric and non-dysarthric speakers, and significant speaker variations stemming from the disorder. This paper introduces Perceiver-Prompt, a method for speaker adaptation that utilizes P-Tuning on the Whisper large-scale model. We first fine-tune Whisper using LoRA and then integrate a trainable Perceiver to generate fixed-length speaker prompts from variable-length inputs, to improve model recognition of Chinese dysarthric speech. Experimental results from our Chinese dysarthric speech dataset demonstrate consistent improvements in recognition performance with Perceiver-Prompt. Relative reduction up to 13.04% in CER is obtained over the fine-tuned Whisper.
Abstract:Motivated by social network analysis and network-based recommendation systems, we study a semi-supervised community detection problem in which the objective is to estimate the community label of a new node using the network topology and partially observed community labels of existing nodes. The network is modeled using a degree-corrected stochastic block model, which allows for severe degree heterogeneity and potentially non-assortative communities. We propose an algorithm that computes a `structural similarity metric' between the new node and each of the $K$ communities by aggregating labeled and unlabeled data. The estimated label of the new node corresponds to the value of $k$ that maximizes this similarity metric. Our method is fast and numerically outperforms existing semi-supervised algorithms. Theoretically, we derive explicit bounds for the misclassification error and show the efficiency of our method by comparing it with an ideal classifier. Our findings highlight, to the best of our knowledge, the first semi-supervised community detection algorithm that offers theoretical guarantees.