Abstract:Memorization in language models is typically treated as a homogenous phenomenon, neglecting the specifics of the memorized data. We instead model memorization as the effect of a set of complex factors that describe each sample and relate it to the model and corpus. To build intuition around these factors, we break memorization down into a taxonomy: recitation of highly duplicated sequences, reconstruction of inherently predictable sequences, and recollection of sequences that are neither. We demonstrate the usefulness of our taxonomy by using it to construct a predictive model for memorization. By analyzing dependencies and inspecting the weights of the predictive model, we find that different factors influence the likelihood of memorization differently depending on the taxonomic category.
Abstract:Motivated by social network analysis and network-based recommendation systems, we study a semi-supervised community detection problem in which the objective is to estimate the community label of a new node using the network topology and partially observed community labels of existing nodes. The network is modeled using a degree-corrected stochastic block model, which allows for severe degree heterogeneity and potentially non-assortative communities. We propose an algorithm that computes a `structural similarity metric' between the new node and each of the $K$ communities by aggregating labeled and unlabeled data. The estimated label of the new node corresponds to the value of $k$ that maximizes this similarity metric. Our method is fast and numerically outperforms existing semi-supervised algorithms. Theoretically, we derive explicit bounds for the misclassification error and show the efficiency of our method by comparing it with an ideal classifier. Our findings highlight, to the best of our knowledge, the first semi-supervised community detection algorithm that offers theoretical guarantees.