Abstract:Large-scale datasets play a vital role in computer vision. Existing datasets are either collected according to heuristic label systems or annotated blindly without differentiation to samples, making them inefficient and unscalable. How to systematically collect, annotate and build a mega-scale dataset remains an open question. In this work, we advocate building a high-quality vision dataset actively and continually on a comprehensive label system. Specifically, we contribute Bamboo Dataset, a mega-scale and information-dense dataset for both classification and detection. Bamboo aims to populate the comprehensive categories with 69M image classification annotations and 170,586 object bounding box annotations. Compared to ImageNet22K and Objects365, models pre-trained on Bamboo achieve superior performance among various downstream tasks (6.2% gains on classification and 2.1% gains on detection). In addition, we provide valuable observations regarding large-scale pre-training from over 1,000 experiments. Due to its scalable nature on both label system and annotation pipeline, Bamboo will continue to grow and benefit from the collective efforts of the community, which we hope would pave the way for more general vision models.
Abstract:The rapid progress of photorealistic synthesis techniques has reached at a critical point where the boundary between real and manipulated images starts to blur. Thus, benchmarking and advancing digital forgery analysis have become a pressing issue. However, existing face forgery datasets either have limited diversity or only support coarse-grained analysis. To counter this emerging threat, we construct the ForgeryNet dataset, an extremely large face forgery dataset with unified annotations in image- and video-level data across four tasks: 1) Image Forgery Classification, including two-way (real / fake), three-way (real / fake with identity-replaced forgery approaches / fake with identity-remained forgery approaches), and n-way (real and 15 respective forgery approaches) classification. 2) Spatial Forgery Localization, which segments the manipulated area of fake images compared to their corresponding source real images. 3) Video Forgery Classification, which re-defines the video-level forgery classification with manipulated frames in random positions. This task is important because attackers in real world are free to manipulate any target frame. and 4) Temporal Forgery Localization, to localize the temporal segments which are manipulated. ForgeryNet is by far the largest publicly available deep face forgery dataset in terms of data-scale (2.9 million images, 221,247 videos), manipulations (7 image-level approaches, 8 video-level approaches), perturbations (36 independent and more mixed perturbations) and annotations (6.3 million classification labels, 2.9 million manipulated area annotations and 221,247 temporal forgery segment labels). We perform extensive benchmarking and studies of existing face forensics methods and obtain several valuable observations.