Abstract:Recent studies have revealed that federated learning (FL), once considered secure due to clients not sharing their private data with the server, is vulnerable to attacks such as client-side training data distribution inference, where a malicious client can recreate the victim's data. While various countermeasures exist, they are not practical, often assuming server access to some training data or knowledge of label distribution before the attack. In this work, we bridge the gap by proposing InferGuard, a novel Byzantine-robust aggregation rule aimed at defending against client-side training data distribution inference attacks. In our proposed InferGuard, the server first calculates the coordinate-wise median of all the model updates it receives. A client's model update is considered malicious if it significantly deviates from the computed median update. We conduct a thorough evaluation of our proposed InferGuard on five benchmark datasets and perform a comparison with ten baseline methods. The results of our experiments indicate that our defense mechanism is highly effective in protecting against client-side training data distribution inference attacks, even against strong adaptive attacks. Furthermore, our method substantially outperforms the baseline methods in various practical FL scenarios.
Abstract:Federated recommendation is a prominent use case within federated learning, yet it remains susceptible to various attacks, from user to server-side vulnerabilities. Poisoning attacks are particularly notable among user-side attacks, as participants upload malicious model updates to deceive the global model, often intending to promote or demote specific targeted items. This study investigates strategies for executing promotion attacks in federated recommender systems. Current poisoning attacks on federated recommender systems often rely on additional information, such as the local training data of genuine users or item popularity. However, such information is challenging for the potential attacker to obtain. Thus, there is a need to develop an attack that requires no extra information apart from item embeddings obtained from the server. In this paper, we introduce a novel fake user based poisoning attack named PoisonFRS to promote the attacker-chosen targeted item in federated recommender systems without requiring knowledge about user-item rating data, user attributes, or the aggregation rule used by the server. Extensive experiments on multiple real-world datasets demonstrate that PoisonFRS can effectively promote the attacker-chosen targeted item to a large portion of genuine users and outperform current benchmarks that rely on additional information about the system. We further observe that the model updates from both genuine and fake users are indistinguishable within the latent space.
Abstract:Recommender systems have been shown to be vulnerable to poisoning attacks, where malicious data is injected into the dataset to cause the recommender system to provide biased recommendations. To defend against such attacks, various robust learning methods have been proposed. However, most methods are model-specific or attack-specific, making them lack generality, while other methods, such as adversarial training, are oriented towards evasion attacks and thus have a weak defense strength in poisoning attacks. In this paper, we propose a general method, Real-time Vicinal Defense (RVD), which leverages neighboring training data to fine-tune the model before making a recommendation for each user. RVD works in the inference phase to ensure the robustness of the specific sample in real-time, so there is no need to change the model structure and training process, making it more practical. Extensive experimental results demonstrate that RVD effectively mitigates targeted poisoning attacks across various models without sacrificing accuracy. Moreover, the defensive effect can be further amplified when our method is combined with other strategies.