Department of Electrical and Computer Engineering, University of California, Los Angeles
Abstract:Terahertz (THz) tomographic imaging has recently attracted significant attention thanks to its non-invasive, non-destructive, non-ionizing, material-classification, and ultra-fast nature for object exploration and inspection. However, its strong water absorption nature and low noise tolerance lead to undesired blurs and distortions of reconstructed THz images. The diffraction-limited THz signals highly constrain the performances of existing restoration methods. To address the problem, we propose a novel multi-view Subspace-Attention-guided Restoration Network (SARNet) that fuses multi-view and multi-spectral features of THz images for effective image restoration and 3D tomographic reconstruction. To this end, SARNet uses multi-scale branches to extract intra-view spatio-spectral amplitude and phase features and fuse them via shared subspace projection and self-attention guidance. We then perform inter-view fusion to further improve the restoration of individual views by leveraging the redundancies between neighboring views. Here, we experimentally construct a THz time-domain spectroscopy (THz-TDS) system covering a broad frequency range from 0.1 THz to 4 THz for building up a temporal/spectral/spatial/ material THz database of hidden 3D objects. Complementary to a quantitative evaluation, we demonstrate the effectiveness of our SARNet model on 3D THz tomographic reconstruction applications.
Abstract:Terahertz computed tomography (THz CT) has drawn significant attention because of its unique capability to bring multi-dimensional object information from invisible to visible. However, current physics-model-based THz CT modalities present low data use efficiency on time-resolved THz signals and low model fusion extensibility, limiting their application fields' practical use. In this paper, we propose a supervised THz deep learning computed tomography (THz DL-CT) framework based on time-domain information. THz DL-CT restores superior THz tomographic images of 3D objects by extracting features from spatio-temporal THz signals without any prior material information. Compared with conventional and machine learning based methods, THz DL-CT delivers at least 50.2%, and 52.6% superior in root mean square error (RMSE) and structural similarity index (SSIM), respectively. Additionally, we have experimentally demonstrated that the pretrained THz DL-CT model can generalize to reconstruct multi-material systems with no prerequisite information. THz CT through the DL data fusion approach provides a new pathway for non-invasive functional imaging in object investigation.
Abstract:Visualizing information inside objects is an ever-lasting need to bridge the world from physics, chemistry, biology to computation. Among all tomographic techniques, terahertz (THz) computational imaging has demonstrated its unique sensing features to digitalize multi-dimensional object information in a non-destructive, non-ionizing, and non-invasive way. Applying modern signal processing and physics-guided modalities, THz computational imaging systems are now launched in various application fields in industrial inspection, security screening, chemical inspection and non-destructive evaluation. In this article, we overview recent advances in THz computational imaging modalities in the aspects of system configuration, wave propagation and interaction models, physics-guided algorithm for digitalizing interior information of imaged objects. Several image restoration and reconstruction issues based on multi-dimensional THz signals are further discussed, which provides a crosslink between material digitalization, functional property extraction, and multi-dimensional imager utilization from a signal processing perspective.
Abstract:Research on optical computing has recently attracted significant attention due to the transformative advances in machine learning. Among different approaches, diffractive optical networks composed of spatially-engineered transmissive surfaces have been demonstrated for all-optical statistical inference and performing arbitrary linear transformations using passive, free-space optical layers. Here, we introduce a polarization multiplexed diffractive processor to all-optically perform multiple, arbitrarily-selected linear transformations through a single diffractive network trained using deep learning. In this framework, an array of pre-selected linear polarizers is positioned between trainable transmissive diffractive materials that are isotropic, and different target linear transformations (complex-valued) are uniquely assigned to different combinations of input/output polarization states. The transmission layers of this polarization multiplexed diffractive network are trained and optimized via deep learning and error-backpropagation by using thousands of examples of the input/output fields corresponding to each one of the complex-valued linear transformations assigned to different input/output polarization combinations. Our results and analysis reveal that a single diffractive network can successfully approximate and all-optically implement a group of arbitrarily-selected target transformations with a negligible error when the number of trainable diffractive features/neurons (N) approaches N_p x N_i x N_o, where N_i and N_o represent the number of pixels at the input and output fields-of-view, respectively, and N_p refers to the number of unique linear transformations assigned to different input/output polarization combinations. This polarization-multiplexed all-optical diffractive processor can find various applications in optical computing and polarization-based machine vision tasks.
Abstract:Terahertz (THz) technology has been a great candidate for applications, including pharmaceutic analysis, chemical identification, and remote sensing and imaging due to its non-invasive and non-destructive properties. Among those applications, penetrating-type hyperspectral THz signals, which provide crucial material information, normally involve a noisy, complex mixture system. Additionally, the measured THz signals could be ill-conditioned due to the overlap of the material absorption peak in the measured bands. To address those issues, we consider penetrating-type signal mixtures and aim to develop a blind hyperspectral unmixing (HU) method without requiring any information from a prebuilt database. The proposed HYperspectral Penetrating-type Ellipsoidal ReconstructION (HYPERION) algorithm is unsupervised, not relying on collecting extensive data or sophisticated model training. Instead, it is developed based on elegant ellipsoidal geometry under a very mild requirement on data purity, whose excellent efficacy is experimentally demonstrated.