Abstract:This paper presents our solution for ICDAR 2021 competition on scientific literature parsing taskB: table recognition to HTML. In our method, we divide the table content recognition task into foursub-tasks: table structure recognition, text line detection, text line recognition, and box assignment.Our table structure recognition algorithm is customized based on MASTER [1], a robust image textrecognition algorithm. PSENet [2] is used to detect each text line in the table image. For text linerecognition, our model is also built on MASTER. Finally, in the box assignment phase, we associatedthe text boxes detected by PSENet with the structure item reconstructed by table structure prediction,and fill the recognized content of the text line into the corresponding item. Our proposed methodachieves a 96.84% TEDS score on 9,115 validation samples in the development phase, and a 96.32%TEDS score on 9,064 samples in the final evaluation phase.
Abstract:This paper presents our solution for the ICDAR 2021 Competition on Scientific Table Image Recognition to LaTeX. This competition has two sub-tasks: Table Structure Reconstruction (TSR) and Table Content Reconstruction (TCR). We treat both sub-tasks as two individual image-to-sequence recognition problems. We leverage our previously proposed algorithm MASTER \cite{lu2019master}, which is originally proposed for scene text recognition. We optimize the MASTER model from several perspectives: network structure, optimizer, normalization method, pre-trained model, resolution of input image, data augmentation, and model ensemble. Our method achieves 0.7444 Exact Match and 0.8765 Exact Match @95\% on the TSR task, and obtains 0.5586 Exact Match and 0.7386 Exact Match 95\% on the TCR task.