Abstract:In this technical report, we present our 1st place solution for the ICDAR 2021 competition on mathematical formula detection (MFD). The MFD task has three key challenges including a large scale span, large variation of the ratio between height and width, and rich character set and mathematical expressions. Considering these challenges, we used Generalized Focal Loss (GFL), an anchor-free method, instead of the anchor-based method, and prove the Adaptive Training Sampling Strategy (ATSS) and proper Feature Pyramid Network (FPN) can well solve the important issue of scale variation. Meanwhile, we also found some tricks, e.g., Deformable Convolution Network (DCN), SyncBN, and Weighted Box Fusion (WBF), were effective in MFD task. Our proposed method ranked 1st in the final 15 teams.
Abstract:This paper presents our solution for ICDAR 2021 competition on scientific literature parsing taskB: table recognition to HTML. In our method, we divide the table content recognition task into foursub-tasks: table structure recognition, text line detection, text line recognition, and box assignment.Our table structure recognition algorithm is customized based on MASTER [1], a robust image textrecognition algorithm. PSENet [2] is used to detect each text line in the table image. For text linerecognition, our model is also built on MASTER. Finally, in the box assignment phase, we associatedthe text boxes detected by PSENet with the structure item reconstructed by table structure prediction,and fill the recognized content of the text line into the corresponding item. Our proposed methodachieves a 96.84% TEDS score on 9,115 validation samples in the development phase, and a 96.32%TEDS score on 9,064 samples in the final evaluation phase.