Abstract:Theoretical studies on transfer learning or domain adaptation have so far focused on situations with a known hypothesis class or model; however in practice, some amount of model selection is usually involved, often appearing under the umbrella term of hyperparameter-tuning: for example, one may think of the problem of tuning for the right neural network architecture towards a target task, while leveraging data from a related source task. Now, in addition to the usual tradeoffs on approximation vs estimation errors involved in model selection, this problem brings in a new complexity term, namely, the transfer distance between source and target distributions, which is known to vary with the choice of hypothesis class. We present a first study of this problem, focusing on classification; in particular, the analysis reveals some remarkable phenomena: adaptive rates, i.e., those achievable with no distributional information, can be arbitrarily slower than oracle rates, i.e., when given knowledge on distances.
Abstract:We study risk of the minimum norm linear least squares estimator in when the number of parameters $d$ depends on $n$, and $\frac{d}{n} \rightarrow \infty$. We assume that data has an underlying low rank structure by restricting ourselves to spike covariance matrices, where a fixed finite number of eigenvalues grow with $n$ and are much larger than the rest of the eigenvalues, which are (asymptotically) in the same order. We show that in this setting risk of minimum norm least squares estimator vanishes in compare to risk of the null estimator. We give asymptotic and non asymptotic upper bounds for this risk, and also leverage the assumption of spike model to give an analysis of the bias that leads to tighter bounds in compare to previous works.