Abstract:Perceptual image compression has shown strong potential for producing visually appealing results at low bitrates, surpassing classical standards and pixel-wise distortion-oriented neural methods. However, existing methods typically improve compression performance by incorporating explicit semantic priors, such as segmentation maps and textual features, into the encoder or decoder, which increases model complexity by adding parameters and floating-point operations. This limits the model's practicality, as image compression often occurs on resource-limited mobile devices. To alleviate this problem, we propose a lightweight perceptual Image Compression method using Implicit Semantic Priors (ICISP). We first develop an enhanced visual state space block that exploits local and global spatial dependencies to reduce redundancy. Since different frequency information contributes unequally to compression, we develop a frequency decomposition modulation block to adaptively preserve or reduce the low-frequency and high-frequency information. We establish the above blocks as the main modules of the encoder-decoder, and to further improve the perceptual quality of the reconstructed images, we develop a semantic-informed discriminator that uses implicit semantic priors from a pretrained DINOv2 encoder. Experiments on popular benchmarks show that our method achieves competitive compression performance and has significantly fewer network parameters and floating point operations than the existing state-of-the-art.
Abstract:Diffusion-based extreme image compression methods have achieved impressive performance at extremely low bitrates. However, constrained by the iterative denoising process that starts from pure noise, these methods are limited in both fidelity and efficiency. To address these two issues, we present Relay Residual Diffusion Extreme Image Compression (RDEIC), which leverages compressed feature initialization and residual diffusion. Specifically, we first use the compressed latent features of the image with added noise, instead of pure noise, as the starting point to eliminate the unnecessary initial stages of the denoising process. Second, we design a novel relay residual diffusion that reconstructs the raw image by iteratively removing the added noise and the residual between the compressed and target latent features. Notably, our relay residual diffusion network seamlessly integrates pre-trained stable diffusion to leverage its robust generative capability for high-quality reconstruction. Third, we propose a fixed-step fine-tuning strategy to eliminate the discrepancy between the training and inference phases, further improving the reconstruction quality. Extensive experiments demonstrate that the proposed RDEIC achieves state-of-the-art visual quality and outperforms existing diffusion-based extreme image compression methods in both fidelity and efficiency. The source code will be provided in https://github.com/huai-chang/RDEIC.
Abstract:Compressing images at extremely low bitrates (below 0.1 bits per pixel (bpp)) is a significant challenge due to substantial information loss. Existing extreme image compression methods generally suffer from heavy compression artifacts or low-fidelity reconstructions. To address this problem, we propose a novel extreme image compression framework that combines compressive VAEs and pre-trained text-to-image diffusion models in an end-to-end manner. Specifically, we introduce a latent feature-guided compression module based on compressive VAEs. This module compresses images and initially decodes the compressed information into content variables. To enhance the alignment between content variables and the diffusion space, we introduce external guidance to modulate intermediate feature maps. Subsequently, we develop a conditional diffusion decoding module that leverages pre-trained diffusion models to further decode these content variables. To preserve the generative capability of pre-trained diffusion models, we keep their parameters fixed and use a control module to inject content information. We also design a space alignment loss to provide sufficient constraints for the latent feature-guided compression module. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of both visual performance and image fidelity at extremely low bitrates.
Abstract:We propose a novel multi-stage depth super-resolution network, which progressively reconstructs high-resolution depth maps from explicit and implicit high-frequency features. The former are extracted by an efficient transformer processing both local and global contexts, while the latter are obtained by projecting color images into the frequency domain. Both are combined together with depth features by means of a fusion strategy within a multi-stage and multi-scale framework. Experiments on the main benchmarks, such as NYUv2, Middlebury, DIML and RGBDD, show that our approach outperforms existing methods by a large margin (~20% on NYUv2 and DIML against the contemporary work DADA, with 16x upsampling), establishing a new state-of-the-art in the guided depth super-resolution task.