Abstract:The integration of multimodal medical imaging can provide complementary and comprehensive information for the diagnosis of Alzheimer's disease (AD). However, in clinical practice, since positron emission tomography (PET) is often missing, multimodal images might be incomplete. To address this problem, we propose a method that can efficiently utilize structural magnetic resonance imaging (sMRI) image information to generate high-quality PET images. Our generation model efficiently utilizes pyramid convolution combined with channel attention mechanism to extract multi-scale local features in sMRI, and injects global correlation information into these features using self-attention mechanism to ensure the restoration of the generated PET image on local texture and global structure. Additionally, we introduce additional loss functions to guide the generation model in producing higher-quality PET images. Through experiments conducted on publicly available ADNI databases, the generated images outperform previous research methods in various performance indicators (average absolute error: 0.0194, peak signal-to-noise ratio: 29.65, structural similarity: 0.9486) and are close to real images. In promoting AD diagnosis, the generated images combined with their corresponding sMRI also showed excellent performance in AD diagnosis tasks (classification accuracy: 94.21 %), and outperformed previous research methods of the same type. The experimental results demonstrate that our method outperforms other competing methods in quantitative metrics, qualitative visualization, and evaluation criteria.
Abstract:The prevalent approaches of Chinese word segmentation task almost rely on the Bi-LSTM neural network. However, the methods based the Bi-LSTM have some inherent drawbacks: hard to parallel computing, little efficient in applying the Dropout method to inhibit the Overfitting and little efficient in capturing the character information at the more distant site of a long sentence for the word segmentation task. In this work, we propose a sequence-to-sequence transformer model for Chinese word segmentation, which is premised a type of convolutional neural network named temporal convolutional network. The model uses the temporal convolutional network to construct an encoder, and uses one layer of fully-connected neural network to build a decoder, and applies the Dropout method to inhibit the Overfitting, and captures the character information at the distant site of a sentence by adding the layers of the encoder, and binds Conditional Random Fields model to train parameters, and uses the Viterbi algorithm to infer the final result of the Chinese word segmentation. The experiments on traditional Chinese corpora and simplified Chinese corpora show that the performance of Chinese word segmentation of the model is equivalent to the performance of the methods based the Bi-LSTM, and the model has a tremendous growth in parallel computing than the models based the Bi-LSTM.