Abstract:Graph Transformer (GT), as a special type of Graph Neural Networks (GNNs), utilizes multi-head attention to facilitate high-order message passing. However, this also imposes several limitations in node classification applications: 1) nodes are susceptible to global noise; 2) self-attention computation cannot scale well to large graphs. In this work, we conduct extensive observational experiments to explore the adaptability of the GT architecture in node classification tasks and draw several conclusions: the current multi-head self-attention module in GT can be completely replaceable, while the feed-forward neural network module proves to be valuable. Based on this, we decouple the propagation (P) and transformation (T) of GNNs and explore a powerful GT architecture, named GNNFormer, which is based on the P/T combination message passing and adapted for node classification in both homophilous and heterophilous scenarios. Extensive experiments on 12 benchmark datasets demonstrate that our proposed GT architecture can effectively adapt to node classification tasks without being affected by global noise and computational efficiency limitations.
Abstract:Traditional anomalous traffic detection methods are based on single-view analysis, which has obvious limitations in dealing with complex attacks and encrypted communications. In this regard, we propose a Multi-view Feature Fusion (MuFF) method for network anomaly traffic detection. MuFF models the temporal and interactive relationships of packets in network traffic based on the temporal and interactive viewpoints respectively. It learns temporal and interactive features. These features are then fused from different perspectives for anomaly traffic detection. Extensive experiments on six real traffic datasets show that MuFF has excellent performance in network anomalous traffic detection, which makes up for the shortcomings of detection under a single perspective.