Abstract:Data-free knowledge distillation (DFKD) has emerged as a pivotal technique in the domain of model compression, substantially reducing the dependency on the original training data. Nonetheless, conventional DFKD methods that employ synthesized training data are prone to the limitations of inadequate diversity and discrepancies in distribution between the synthesized and original datasets. To address these challenges, this paper introduces an innovative approach to DFKD through diverse diffusion augmentation (DDA). Specifically, we revise the paradigm of common data synthesis in DFKD to a composite process through leveraging diffusion models subsequent to data synthesis for self-supervised augmentation, which generates a spectrum of data samples with similar distributions while retaining controlled variations. Furthermore, to mitigate excessive deviation in the embedding space, we introduce an image filtering technique grounded in cosine similarity to maintain fidelity during the knowledge distillation process. Comprehensive experiments conducted on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets showcase the superior performance of our method across various teacher-student network configurations, outperforming the contemporary state-of-the-art DFKD methods. Code will be available at:https://github.com/SLGSP/DDA.
Abstract:Spiking federated learning is an emerging distributed learning paradigm that allows resource-constrained devices to train collaboratively at low power consumption without exchanging local data. It takes advantage of both the privacy computation property in federated learning (FL) and the energy efficiency in spiking neural networks (SNN). Thus, it is highly promising to revolutionize the efficient processing of multimedia data. However, existing spiking federated learning methods employ a random selection approach for client aggregation, assuming unbiased client participation. This neglect of statistical heterogeneity affects the convergence and accuracy of the global model significantly. In our work, we propose a credit assignment-based active client selection strategy, the SFedCA, to judiciously aggregate clients that contribute to the global sample distribution balance. Specifically, the client credits are assigned by the firing intensity state before and after local model training, which reflects the local data distribution difference from the global model. Comprehensive experiments are conducted on various non-identical and independent distribution (non-IID) scenarios. The experimental results demonstrate that the SFedCA outperforms the existing state-of-the-art spiking federated learning methods, and requires fewer communication rounds.
Abstract:In recent years, studies on image generation models of spiking neural networks (SNNs) have gained the attention of many researchers. Variational autoencoders (VAEs), as one of the most popular image generation models, have attracted a lot of work exploring their SNN implementation. Due to the constrained binary representation in SNNs, existing SNN VAE methods implicitly construct the latent space by an elaborated autoregressive network and use the network outputs as the sampling variables. However, this unspecified implicit representation of the latent space will increase the difficulty of generating high-quality images and introduces additional network parameters. In this paper, we propose an efficient spiking variational autoencoder (ESVAE) that constructs an interpretable latent space distribution and design a reparameterizable spiking sampling method. Specifically, we construct the prior and posterior of the latent space as a Poisson distribution using the firing rate of the spiking neurons. Subsequently, we propose a reparameterizable Poisson spiking sampling method, which is free from the additional network. Comprehensive experiments have been conducted, and the experimental results show that the proposed ESVAE outperforms previous SNN VAE methods in reconstructed & generated images quality. In addition, experiments demonstrate that ESVAE's encoder is able to retain the original image information more efficiently, and the decoder is more robust. The source code is available at https://github.com/QgZhan/ESVAE.