Abstract:For single image defocus deblurring, acquiring well-aligned training pairs (or training triplets), i.e., a defocus blurry image, an all-in-focus sharp image (and a defocus blur map), is an intricate task for the development of deblurring models. Existing image defocus deblurring methods typically rely on training data collected by specialized imaging equipment, presupposing that these pairs or triplets are perfectly aligned. However, in practical scenarios involving the collection of real-world data, direct acquisition of training triplets is infeasible, and training pairs inevitably encounter spatial misalignment issues. In this work, we introduce a reblurring-guided learning framework for single image defocus deblurring, enabling the learning of a deblurring network even with misaligned training pairs. Specifically, we first propose a baseline defocus deblurring network that utilizes spatially varying defocus blur map as degradation prior to enhance the deblurring performance. Then, to effectively learn the baseline defocus deblurring network with misaligned training pairs, our reblurring module ensures spatial consistency between the deblurred image, the reblurred image and the input blurry image by reconstructing spatially variant isotropic blur kernels. Moreover, the spatially variant blur derived from the reblurring module can serve as pseudo supervision for defocus blur map during training, interestingly transforming training pairs into training triplets. Additionally, we have collected a new dataset specifically for single image defocus deblurring (SDD) with typical misalignments, which not only substantiates our proposed method but also serves as a benchmark for future research.
Abstract:By adopting popular pixel-wise loss, existing methods for defocus deblurring heavily rely on well aligned training image pairs. Although training pairs of ground-truth and blurry images are carefully collected, e.g., DPDD dataset, misalignment is inevitable between training pairs, making existing methods possibly suffer from deformation artifacts. In this paper, we propose a joint deblurring and reblurring learning (JDRL) framework for single image defocus deblurring with misaligned training pairs. Generally, JDRL consists of a deblurring module and a spatially invariant reblurring module, by which deblurred result can be adaptively supervised by ground-truth image to recover sharp textures while maintaining spatial consistency with the blurry image. First, in the deblurring module, a bi-directional optical flow-based deformation is introduced to tolerate spatial misalignment between deblurred and ground-truth images. Second, in the reblurring module, deblurred result is reblurred to be spatially aligned with blurry image, by predicting a set of isotropic blur kernels and weighting maps. Moreover, we establish a new single image defocus deblurring (SDD) dataset, further validating our JDRL and also benefiting future research. Our JDRL can be applied to boost defocus deblurring networks in terms of both quantitative metrics and visual quality on DPDD, RealDOF and our SDD datasets.