Abstract:To unlock access to stronger winds, the offshore wind industry is advancing with significantly larger and taller wind turbines. This massive upscaling motivates a departure from univariate wind forecasting methods that traditionally focused on a single representative height. To fill this gap, we propose DeepMIDE--a statistical deep learning method which jointly models the offshore wind speeds across space, time, and height. DeepMIDE is formulated as a multi-output integro-difference equation model with a multivariate, nonstationary, and state-dependent kernel characterized by a set of advection vectors that encode the physics of wind field formation and propagation. Embedded within DeepMIDE, an advanced deep learning architecture learns these advection vectors from high dimensional streams of exogenous weather information, which, along with other parameters, are plugged back into the statistical model for probabilistic multi-height space-time forecasting. Tested on real-world data from future offshore wind energy sites in the Northeastern United States, the wind speed and power forecasts from DeepMIDE are shown to outperform those from prevalent time series, spatio-temporal, and deep learning methods.
Abstract:Adapting large-scale pre-trained generative models in a parameter-efficient manner is gaining traction. Traditional methods like low rank adaptation achieve parameter efficiency by imposing constraints but may not be optimal for tasks requiring high representation capacity. We propose a novel spectrum-aware adaptation framework for generative models. Our method adjusts both singular values and their basis vectors of pretrained weights. Using the Kronecker product and efficient Stiefel optimizers, we achieve parameter-efficient adaptation of orthogonal matrices. We introduce Spectral Orthogonal Decomposition Adaptation (SODA), which balances computational efficiency and representation capacity. Extensive evaluations on text-to-image diffusion models demonstrate SODA's effectiveness, offering a spectrum-aware alternative to existing fine-tuning methods.