Abstract:Since the release of ChatGPT and GPT-4, large language models (LLMs) and multimodal large language models (MLLMs) have garnered significant attention due to their powerful and general capabilities in understanding, reasoning, and generation, thereby offering new paradigms for the integration of artificial intelligence with medicine. This survey comprehensively overviews the development background and principles of LLMs and MLLMs, as well as explores their application scenarios, challenges, and future directions in medicine. Specifically, this survey begins by focusing on the paradigm shift, tracing the evolution from traditional models to LLMs and MLLMs, summarizing the model structures to provide detailed foundational knowledge. Subsequently, the survey details the entire process from constructing and evaluating to using LLMs and MLLMs with a clear logic. Following this, to emphasize the significant value of LLMs and MLLMs in healthcare, we survey and summarize 6 promising applications in healthcare. Finally, the survey discusses the challenges faced by medical LLMs and MLLMs and proposes a feasible approach and direction for the subsequent integration of artificial intelligence with medicine. Thus, this survey aims to provide researchers with a valuable and comprehensive reference guide from the perspectives of the background, principles, and clinical applications of LLMs and MLLMs.
Abstract:Owing to the capacity of performing full-time target search, cross-modality vehicle re-identification (Re-ID) based on unmanned aerial vehicle (UAV) is gaining more attention in both video surveillance and public security. However, this promising and innovative research has not been studied sufficiently due to the data inadequacy issue. Meanwhile, the cross-modality discrepancy and orientation discrepancy challenges further aggravate the difficulty of this task. To this end, we pioneer a cross-modality vehicle Re-ID benchmark named UAV Cross-Modality Vehicle Re-ID (UCM-VeID), containing 753 identities with 16015 RGB and 13913 infrared images. Moreover, to meet cross-modality discrepancy and orientation discrepancy challenges, we present a hybrid weights decoupling network (HWDNet) to learn the shared discriminative orientation-invariant features. For the first challenge, we proposed a hybrid weights siamese network with a well-designed weight restrainer and its corresponding objective function to learn both modality-specific and modality shared information. In terms of the second challenge, three effective decoupling structures with two pretext tasks are investigated to learn orientation-invariant feature. Comprehensive experiments are carried out to validate the effectiveness of the proposed method. The dataset and codes will be released at https://github.com/moonstarL/UAV-CM-VeID.
Abstract:Deep learning methodology contributes a lot to the development of hyperspectral image (HSI) analysis community. However, it also makes HSI analysis systems vulnerable to adversarial attacks. To this end, we propose a masked spatial-spectral autoencoder (MSSA) in this paper under self-supervised learning theory, for enhancing the robustness of HSI analysis systems. First, a masked sequence attention learning module is conducted to promote the inherent robustness of HSI analysis systems along spectral channel. Then, we develop a graph convolutional network with learnable graph structure to establish global pixel-wise combinations.In this way, the attack effect would be dispersed by all the related pixels among each combination, and a better defense performance is achievable in spatial aspect.Finally, to improve the defense transferability and address the problem of limited labelled samples, MSSA employs spectra reconstruction as a pretext task and fits the datasets in a self-supervised manner.Comprehensive experiments over three benchmarks verify the effectiveness of MSSA in comparison with the state-of-the-art hyperspectral classification methods and representative adversarial defense strategies.