https://github.com/moonstarL/UAV-CM-VeID.
Owing to the capacity of performing full-time target search, cross-modality vehicle re-identification (Re-ID) based on unmanned aerial vehicle (UAV) is gaining more attention in both video surveillance and public security. However, this promising and innovative research has not been studied sufficiently due to the data inadequacy issue. Meanwhile, the cross-modality discrepancy and orientation discrepancy challenges further aggravate the difficulty of this task. To this end, we pioneer a cross-modality vehicle Re-ID benchmark named UAV Cross-Modality Vehicle Re-ID (UCM-VeID), containing 753 identities with 16015 RGB and 13913 infrared images. Moreover, to meet cross-modality discrepancy and orientation discrepancy challenges, we present a hybrid weights decoupling network (HWDNet) to learn the shared discriminative orientation-invariant features. For the first challenge, we proposed a hybrid weights siamese network with a well-designed weight restrainer and its corresponding objective function to learn both modality-specific and modality shared information. In terms of the second challenge, three effective decoupling structures with two pretext tasks are investigated to learn orientation-invariant feature. Comprehensive experiments are carried out to validate the effectiveness of the proposed method. The dataset and codes will be released at