Abstract:All-in-one weather image restoration methods are valuable in practice but depend on pre-collected data and require retraining for unseen degradations, leading to high cost. We propose DELNet, a continual learning framework for weather image restoration. DELNet integrates a judging valve that measures task similarity to distinguish new from known tasks, and a dynamic expert library that stores experts trained on different degradations. For new tasks, the valve selects top-k experts for knowledge transfer while adding new experts to capture task-specific features; for known tasks, the corresponding experts are directly reused. This design enables continuous optimization without retraining existing models. Experiments on OTS, Rain100H, and Snow100K demonstrate that DELNet surpasses state-of-the-art continual learning methods, achieving PSNR gains of 16\%, 11\%, and 12\%, respectively. These results highlight the effectiveness, robustness, and efficiency of DELNet, which reduces retraining cost and enables practical deployment in real-world scenarios.
Abstract:Since the release of ChatGPT and GPT-4, large language models (LLMs) and multimodal large language models (MLLMs) have garnered significant attention due to their powerful and general capabilities in understanding, reasoning, and generation, thereby offering new paradigms for the integration of artificial intelligence with medicine. This survey comprehensively overviews the development background and principles of LLMs and MLLMs, as well as explores their application scenarios, challenges, and future directions in medicine. Specifically, this survey begins by focusing on the paradigm shift, tracing the evolution from traditional models to LLMs and MLLMs, summarizing the model structures to provide detailed foundational knowledge. Subsequently, the survey details the entire process from constructing and evaluating to using LLMs and MLLMs with a clear logic. Following this, to emphasize the significant value of LLMs and MLLMs in healthcare, we survey and summarize 6 promising applications in healthcare. Finally, the survey discusses the challenges faced by medical LLMs and MLLMs and proposes a feasible approach and direction for the subsequent integration of artificial intelligence with medicine. Thus, this survey aims to provide researchers with a valuable and comprehensive reference guide from the perspectives of the background, principles, and clinical applications of LLMs and MLLMs.