Abstract:The paper describes a dataset comprising indoor environmental factors such as temperature, humidity, air quality, and noise levels. The data was collected from 10 sensing devices installed in various locations within three single-family houses in Virginia, USA. The objective of the data collection was to study the indoor environmental conditions of the houses over time. The data were collected at a frequency of one record per minute for a year, combining over 2.5 million records. The paper provides actual floor plans with sensor placements to aid researchers and practitioners in creating reliable building performance models. The techniques used to collect and verify the data are also explained in the paper. The resulting dataset can be employed to enhance models for building energy consumption, occupant behavior, predictive maintenance, and other relevant purposes.
Abstract:The user persona is a communication tool for designers to generate a mental model that describes the archetype of users. Developing building occupant personas is proven to be an effective method for human-centered smart building design, which considers occupant comfort, behavior, and energy consumption. Optimization of building energy consumption also requires a deep understanding of occupants' preferences and behaviors. The current approaches to developing building occupant personas face a major obstruction of manual data processing and analysis. In this study, we propose and evaluate a machine learning-based semi-automated approach to generate building occupant personas. We investigate the 2015 Residential Energy Consumption Dataset with five machine learning techniques - Linear Discriminant Analysis, K Nearest Neighbors, Decision Tree (Random Forest), Support Vector Machine, and AdaBoost classifier - for the prediction of 16 occupant characteristics, such as age, education, and, thermal comfort. The models achieve an average accuracy of 61% and accuracy over 90% for attributes including the number of occupants in the household, their age group, and preferred usage of heating or cooling equipment. The results of the study show the feasibility of using machine learning techniques for the development of building occupant persona to minimize human effort.
Abstract:Based on digital whole slide scanning technique, artificial intelligence algorithms represented by deep learning have achieved remarkable results in the field of computational pathology. Compared with other medical images such as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), pathological images are more difficult to annotate, thus there is an extreme lack of data sets that can be used for supervised learning. In this study, a self-supervised learning (SSL) model, Global Contrast Masked Autoencoders (GCMAE), is proposed, which has the ability to represent both global and local domain-specific features of whole slide image (WSI), as well as excellent cross-data transfer ability. The Camelyon16 and NCTCRC datasets are used to evaluate the performance of our model. When dealing with transfer learning tasks with different data sets, the experimental results show that GCMAE has better linear classification accuracy than MAE, which can reach 81.10% and 89.22% respectively. Our method outperforms the previous state-of-the-art algorithm and even surpass supervised learning (improved by 3.86% on NCTCRC data sets). The source code of this paper is publicly available at https://github.com/StarUniversus/gcmae
Abstract:The deep neural network is a research hotspot for histopathological image analysis, which can improve the efficiency and accuracy of diagnosis for pathologists or be used for disease screening. The whole slide pathological image can reach one gigapixel and contains abundant tissue feature information, which needs to be divided into a lot of patches in the training and inference stages. This will lead to a long convergence time and large memory consumption. Furthermore, well-annotated data sets are also in short supply in the field of digital pathology. Inspired by the pathologist's clinical diagnosis process, we propose a weakly supervised deep reinforcement learning framework, which can greatly reduce the time required for network inference. We use neural network to construct the search model and decision model of reinforcement learning agent respectively. The search model predicts the next action through the image features of different magnifications in the current field of view, and the decision model is used to return the predicted probability of the current field of view image. In addition, an expert-guided model is constructed by multi-instance learning, which not only provides rewards for search model, but also guides decision model learning by the knowledge distillation method. Experimental results show that our proposed method can achieve fast inference and accurate prediction of whole slide images without any pixel-level annotations.