Abstract:CDR (Cross-Domain Recommendation), i.e., leveraging information from multiple domains, is a critical solution to data sparsity problem in recommendation system. The majority of previous research either focused on single-target CDR (STCDR) by utilizing data from the source domains to improve the model's performance on the target domain, or applied dual-target CDR (DTCDR) by integrating data from the source and target domains. In addition, multi-target CDR (MTCDR) is a generalization of DTCDR, which is able to capture the link among different domains. In this paper we present HGDR (Heterogeneous Graph-based Framework with Disentangled Representations Learning), an end-to-end heterogeneous network architecture where graph convolutional layers are applied to model relations among different domains, meanwhile utilizes the idea of disentangling representation for domain-shared and domain-specifc information. First, a shared heterogeneous graph is generated by gathering users and items from several domains without any further side information. Second, we use HGDR to compute disentangled representations for users and items in all domains.Experiments on real-world datasets and online A/B tests prove that our proposed model can transmit information among domains effectively and reach the SOTA performance.
Abstract:In fringe projection profilometry, the high-order harmonics information of non-sinusoidal fringes will lead to errors in the phase estimation. In order to solve this problem, a point-wise posterior phase estimation (PWPPE) method based on deep learning technique is proposed in this paper. The complex nonlinear mapping relationship between the multiple gray values and the sine / cosine value of the phase is constructed by using the feedforward neural network model. After the model training, it can estimate the phase values of each pixel location, and the accuracy is higher than the point-wise least-square (PWLS) method. To further verify the effectiveness of this method, a face mask is measured, the traditional PWLS method and the proposed PWPPE method are employed, respectively. The comparison results show that the traditional method is with periodic phase errors, while the proposed PWPPE method can effectively eliminate such phase errors caused by non-sinusoidal fringes.
Abstract:Brain tumor segmentation plays a pivotal role in medical image processing. In this work, we aim to segment brain MRI volumes. 3D convolution neural networks (CNN) such as 3D U-Net and V-Net employing 3D convolutions to capture the correlation between adjacent slices have achieved impressive segmentation results. However, these 3D CNN architectures come with high computational overheads due to multiple layers of 3D convolutions, which may make these models prohibitive for practical large-scale applications. To this end, we propose a highly efficient 3D CNN to achieve real-time dense volumetric segmentation. The network leverages the 3D multi-fiber unit which consists of an ensemble of lightweight 3D convolutional networks to significantly reduce the computational cost. Moreover, 3D dilated convolutions are used to build multi-scale feature representations. Extensive experimental results on the BraTS-2018 challenge dataset show that the proposed architecture greatly reduces computation cost while maintaining high accuracy for brain tumor segmentation. Our code will be released soon.