Abstract:In recent years, wide-area visual surveillance systems have been widely applied in various industrial and transportation scenarios. These systems, however, face significant challenges when implementing multi-object detection due to conflicts arising from the need for high-resolution imaging, efficient object searching, and accurate localization. To address these challenges, this paper presents a hybrid system that incorporates a wide-angle camera, a high-speed search camera, and a galvano-mirror. In this system, the wide-angle camera offers panoramic images as prior information, which helps the search camera capture detailed images of the targeted objects. This integrated approach enhances the overall efficiency and effectiveness of wide-area visual detection systems. Specifically, in this study, we introduce a wide-angle camera-based method to generate a panoramic probability map (PPM) for estimating high-probability regions of target object presence. Then, we propose a probability searching module that uses the PPM-generated prior information to dynamically adjust the sampling range and refine target coordinates based on uncertainty variance computed by the object detector. Finally, the integration of PPM and the probability searching module yields an efficient hybrid vision system capable of achieving 120 fps multi-object search and detection. Extensive experiments are conducted to verify the system's effectiveness and robustness.
Abstract:Deep neural networks (DNNs) have achieved great success in a wide range of computer vision areas, but the applications to mobile devices is limited due to their high storage and computational cost. Much efforts have been devoted to compress DNNs. In this paper, we propose a simple yet effective method for deep networks compression, named Cluster Regularized Quantization (CRQ), which can reduce the presentation precision of a full-precision model to ternary values without significant accuracy drop. In particular, the proposed method aims at reducing the quantization error by introducing a cluster regularization term, which is imposed on the full-precision weights to enable them naturally concentrate around the target values. Through explicitly regularizing the weights during the re-training stage, the full-precision model can achieve the smooth transition to the low-bit one. Comprehensive experiments on benchmark datasets demonstrate the effectiveness of the proposed method.