Abstract:The transition towards carbon-neutral electricity is one of the biggest game changers in addressing climate change since it addresses the dual challenges of removing carbon emissions from the two largest sectors of emitters: electricity and transportation. The transition to a carbon-neutral electric grid poses significant challenges to conventional paradigms of modern grid planning and operation. Much of the challenge arises from the scale of the decision making and the uncertainty associated with the energy supply and demand. Artificial Intelligence (AI) could potentially have a transformative impact on accelerating the speed and scale of carbon-neutral transition, as many decision making processes in the power grid can be cast as classic, though challenging, machine learning tasks. We point out that to amplify AI's impact on carbon-neutral transition of the electric energy systems, the AI algorithms originally developed for other applications should be tailored in three layers of technology, markets, and policy.
Abstract:This article presents a use-inspired perspective of the opportunities and challenges in a massively digitized power grid. It argues that the intricate interplay of data availability, computing capability, and artificial intelligence (AI) algorithm development are the three key factors driving the adoption of digitized solutions in the power grid. The impact of these three factors on critical functions of power system operation and planning practices are reviewed and illustrated with industrial practice case studies. Open challenges and research opportunities for data, computing, and AI algorithms are articulated within the context of the power industry's tremendous decarbonization efforts.
Abstract:The electric grid is a key enabling infrastructure for the ambitious transition towards carbon neutrality as we grapple with climate change. With deepening penetration of renewable energy resources and electrified transportation, the reliable and secure operation of the electric grid becomes increasingly challenging. In this paper, we present PSML, a first-of-its-kind open-access multi-scale time-series dataset, to aid in the development of data-driven machine learning (ML) based approaches towards reliable operation of future electric grids. The dataset is generated through a novel transmission + distribution (T+D) co-simulation designed to capture the increasingly important interactions and uncertainties of the grid dynamics, containing electric load, renewable generation, weather, voltage and current measurements at multiple spatio-temporal scales. Using PSML, we provide state-of-the-art ML baselines on three challenging use cases of critical importance to achieve: (i) early detection, accurate classification and localization of dynamic disturbance events; (ii) robust hierarchical forecasting of load and renewable energy with the presence of uncertainties and extreme events; and (iii) realistic synthetic generation of physical-law-constrained measurement time series. We envision that this dataset will enable advances for ML in dynamic systems, while simultaneously allowing ML researchers to contribute towards carbon-neutral electricity and mobility.
Abstract:This paper concerns with the production of synthetic phasor measurement unit (PMU) data for research and education purposes. Due to the confidentiality of real PMU data and no public access to the real power systems infrastructure information, the lack of credible realistic data becomes a growing concern. Instead of constructing synthetic power grids and then producing synthetic PMU measurement data by time simulations, we propose a model-free approach to directly generate synthetic PMU data. we train the generative adversarial network (GAN) with real PMU data, which can be used to generate synthetic PMU data capturing the system dynamic behaviors. To validate the sequential generation by GAN to mimic PMU data, we theoretically analyze GAN's capacity of learning system dynamics. Further by evaluating the synthetic PMU data by a proposed quantitative method, we verify GAN's potential to synthesize realistic samples and meanwhile realize that GAN model in this paper still has room to improve. Moreover it is the first time that such generative model is applied to synthesize PMU data.