Abstract:Existing Advanced Driver Assistance Systems primarily focus on the vehicle directly ahead, often overlooking potential risks from following vehicles. This oversight can lead to ineffective handling of high risk situations, such as high speed, closely spaced, multi vehicle scenarios where emergency braking by one vehicle might trigger a pile up collision. To overcome these limitations, this study introduces a novel deep reinforcement learning based algorithm for longitudinal control and collision avoidance. This proposed algorithm effectively considers the behavior of both leading and following vehicles. Its implementation in simulated high risk scenarios, which involve emergency braking in dense traffic where traditional systems typically fail, has demonstrated the algorithm ability to prevent potential pile up collisions, including those involving heavy duty vehicles.
Abstract:The chest X-Ray (CXR) is the one of the most common clinical exam used to diagnose thoracic diseases and abnormalities. The volume of CXR scans generated daily in hospitals is huge. Therefore, an automated diagnosis system able to save the effort of doctors is of great value. At present, the applications of artificial intelligence in CXR diagnosis usually use pattern recognition to classify the scans. However, such methods rely on labeled databases, which are costly and usually have large error rates. In this work, we built a database containing more than 12,000 CXR scans and radiological reports, and developed a model based on deep convolutional neural network and recurrent network with attention mechanism. The model learns features from the CXR scans and the associated raw radiological reports directly; no additional labeling of the scans are needed. The model provides automated recognition of given scans and generation of reports. The quality of the generated reports was evaluated with both the CIDEr scores and by radiologists as well. The CIDEr scores are found to be around 5.8 on average for the testing dataset. Further blind evaluation suggested a comparable performance against human radiologist.