Abstract:With the rapid development of intelligent vehicles and Intelligent Transport Systems (ITS), the sensors such as cameras and LiDAR installed on intelligent vehicles provides higher capacity of executing computation-intensive and delay-sensitive tasks, thereby raising deployment costs. To address this issue, Vehicular Edge Computing (VEC) has been proposed to process data through Road Side Units (RSUs) to support real-time applications. This paper focuses on the Age of Information (AoI) as a key metric for data freshness and explores task offloading issues for vehicles under RSU communication resource constraints. We adopt a Multi-agent Deep Reinforcement Learning (MADRL) approach, allowing vehicles to autonomously make optimal data offloading decisions. However, MADRL poses risks of vehicle information leakage during communication learning and centralized training. To mitigate this, we employ a Federated Learning (FL) framework that shares model parameters instead of raw data to protect the privacy of vehicle users. Building on this, we propose an innovative distributed federated learning framework combining Graph Neural Networks (GNN), named Federated Graph Neural Network Multi-Agent Reinforcement Learning (FGNN-MADRL), to optimize AoI across the system. For the first time, road scenarios are constructed as graph data structures, and a GNN-based federated learning framework is proposed, effectively combining distributed and centralized federated aggregation. Furthermore, we propose a new MADRL algorithm that simplifies decision making and enhances offloading efficiency, further reducing the decision complexity. Simulation results demonstrate the superiority of our proposed approach to other methods through simulations.
Abstract:Edge caching is a promising solution for next-generation networks by empowering caching units in small-cell base stations (SBSs), which allows user equipments (UEs) to fetch users' requested contents that have been pre-cached in SBSs. It is crucial for SBSs to predict accurate popular contents through learning while protecting users' personal information. Traditional federated learning (FL) can protect users' privacy but the data discrepancies among UEs can lead to a degradation in model quality. Therefore, it is necessary to train personalized local models for each UE to predict popular contents accurately. In addition, the cached contents can be shared among adjacent SBSs in next-generation networks, thus caching predicted popular contents in different SBSs may affect the cost to fetch contents. Hence, it is critical to determine where the popular contents are cached cooperatively. To address these issues, we propose a cooperative edge caching scheme based on elastic federated and multi-agent deep reinforcement learning (CEFMR) to optimize the cost in the network. We first propose an elastic FL algorithm to train the personalized model for each UE, where adversarial autoencoder (AAE) model is adopted for training to improve the prediction accuracy, then {a popular} content prediction algorithm is proposed to predict the popular contents for each SBS based on the trained AAE model. Finally, we propose a multi-agent deep reinforcement learning (MADRL) based algorithm to decide where the predicted popular contents are collaboratively cached among SBSs. Our experimental results demonstrate the superiority of our proposed scheme to existing baseline caching schemes.
Abstract:Vehicular edge computing (VEC) is a promising technology to support real-time vehicular applications, where vehicles offload intensive computation tasks to the nearby VEC server for processing. However, the traditional VEC that relies on single communication technology cannot well meet the communication requirement for task offloading, thus the heterogeneous VEC integrating the advantages of dedicated short-range communications (DSRC), millimeter-wave (mmWave) and cellular-based vehicle to infrastructure (C-V2I) is introduced to enhance the communication capacity. The communication resource allocation and computation resource allocation may significantly impact on the ultra-reliable low-latency communication (URLLC) performance and the VEC system utility, in this case, how to do the resource allocations is becoming necessary. In this paper, we consider a heterogeneous VEC with multiple communication technologies and various types of tasks, and propose an effective resource allocation policy to minimize the system utility while satisfying the URLLC requirement. We first formulate an optimization problem to minimize the system utility under the URLLC constraint which modeled by the moment generating function (MGF)-based stochastic network calculus (SNC), then we present a Lyapunov-guided deep reinforcement learning (DRL) method to convert and solve the optimization problem. Extensive simulation experiments illustrate that the proposed resource allocation approach is effective.