Abstract:This work introduces BEV-LIO(LC), a novel LiDAR-Inertial Odometry (LIO) framework that combines Bird's Eye View (BEV) image representations of LiDAR data with geometry-based point cloud registration and incorporates loop closure (LC) through BEV image features. By normalizing point density, we project LiDAR point clouds into BEV images, thereby enabling efficient feature extraction and matching. A lightweight convolutional neural network (CNN) based feature extractor is employed to extract distinctive local and global descriptors from the BEV images. Local descriptors are used to match BEV images with FAST keypoints for reprojection error construction, while global descriptors facilitate loop closure detection. Reprojection error minimization is then integrated with point-to-plane registration within an iterated Extended Kalman Filter (iEKF). In the back-end, global descriptors are used to create a KD-tree-indexed keyframe database for accurate loop closure detection. When a loop closure is detected, Random Sample Consensus (RANSAC) computes a coarse transform from BEV image matching, which serves as the initial estimate for Iterative Closest Point (ICP). The refined transform is subsequently incorporated into a factor graph along with odometry factors, improving the global consistency of localization. Extensive experiments conducted in various scenarios with different LiDAR types demonstrate that BEV-LIO(LC) outperforms state-of-the-art methods, achieving competitive localization accuracy. Our code, video and supplementary materials can be found at https://github.com/HxCa1/BEV-LIO-LC.
Abstract:Single object tracking (SOT) heavily relies on the representation of the target object as a bounding box. However, due to the potential deformation and rotation experienced by the tracked targets, the genuine bounding box fails to capture the appearance information explicitly and introduces cluttered background. This paper proposes RTrack, a novel object representation baseline tracker that utilizes a set of sample points to get a pseudo bounding box. RTrack automatically arranges these points to define the spatial extents and highlight local areas. Building upon the baseline, we conducted an in-depth exploration of the training potential and introduced a one-to-many leading assignment strategy. It is worth noting that our approach achieves competitive performance to the state-of-the-art trackers on the GOT-10k dataset while reducing training time to just 10% of the previous state-of-the-art (SOTA) trackers' training costs. The substantial reduction in training costs brings single-object tracking (SOT) closer to the object detection (OD) task. Extensive experiments demonstrate that our proposed RTrack achieves SOTA results with faster convergence.
Abstract:The recent advancements in transformer-based visual trackers have led to significant progress, attributed to their strong modeling capabilities. However, as performance improves, running latency correspondingly increases, presenting a challenge for real-time robotics applications, especially on edge devices with computational constraints. In response to this, we introduce LiteTrack, an efficient transformer-based tracking model optimized for high-speed operations across various devices. It achieves a more favorable trade-off between accuracy and efficiency than the other lightweight trackers. The main innovations of LiteTrack encompass: 1) asynchronous feature extraction and interaction between the template and search region for better feature fushion and cutting redundant computation, and 2) pruning encoder layers from a heavy tracker to refine the balnace between performance and speed. As an example, our fastest variant, LiteTrack-B4, achieves 65.2% AO on the GOT-10k benchmark, surpassing all preceding efficient trackers, while running over 100 fps with ONNX on the Jetson Orin NX edge device. Moreover, our LiteTrack-B9 reaches competitive 72.2% AO on GOT-10k and 82.4% AUC on TrackingNet, and operates at 171 fps on an NVIDIA 2080Ti GPU. The code and demo materials will be available at https://github.com/TsingWei/LiteTrack.