Abstract:In recent years, Large Language Models (LLMs) have made significant strides towards Artificial General Intelligence. However, training these models from scratch requires substantial computational resources and vast amounts of text data. In this paper, we explore an alternative approach to constructing an LLM for a new language by continually pretraining (CPT) from existing pretrained LLMs, instead of using randomly initialized parameters. Based on parallel experiments on 40 model sizes ranging from 40M to 5B parameters, we find that 1) CPT converges faster and saves significant resources in a scalable manner; 2) CPT adheres to an extended scaling law derived from Hoffmann et al. (2022) with a joint data-parameter scaling term; 3) The compute-optimal data-parameter allocation for CPT markedly differs based on our estimated scaling factors; 4) The effectiveness of transfer at scale is influenced by training duration and linguistic properties, while robust to data replaying, a method that effectively mitigates catastrophic forgetting in CPT. We hope our findings provide deeper insights into the transferability of LLMs at scale for the research community.
Abstract:End-to-end task-oriented dialogue (EToD) can directly generate responses in an end-to-end fashion without modular training, which attracts escalating popularity. The advancement of deep neural networks, especially the successful use of large pre-trained models, has further led to significant progress in EToD research in recent years. In this paper, we present a thorough review and provide a unified perspective to summarize existing approaches as well as recent trends to advance the development of EToD research. The contributions of this paper can be summarized: (1) \textbf{\textit{First survey}}: to our knowledge, we take the first step to present a thorough survey of this research field; (2) \textbf{\textit{New taxonomy}}: we first introduce a unified perspective for EToD, including (i) \textit{Modularly EToD} and (ii) \textit{Fully EToD}; (3) \textbf{\textit{New Frontiers}}: we discuss some potential frontier areas as well as the corresponding challenges, hoping to spur breakthrough research in EToD field; (4) \textbf{\textit{Abundant resources}}: we build a public website\footnote{We collect the related papers, baseline projects, and leaderboards for the community at \url{https://etods.net/}.}, where EToD researchers could directly access the recent progress. We hope this work can serve as a thorough reference for the EToD research community.
Abstract:Zero-shot dialogue understanding aims to enable dialogue to track the user's needs without any training data, which has gained increasing attention. In this work, we investigate the understanding ability of ChatGPT for zero-shot dialogue understanding tasks including spoken language understanding (SLU) and dialogue state tracking (DST). Experimental results on four popular benchmarks reveal the great potential of ChatGPT for zero-shot dialogue understanding. In addition, extensive analysis shows that ChatGPT benefits from the multi-turn interactive prompt in the DST task but struggles to perform slot filling for SLU. Finally, we summarize several unexpected behaviors of ChatGPT in dialogue understanding tasks, hoping to provide some insights for future research on building zero-shot dialogue understanding systems with Large Language Models (LLMs).