Abstract:Clustering artworks based on style has many potential real-world applications like art recommendations, style-based search and retrieval, and the study of artistic style evolution in an artwork corpus. However, clustering artworks based on style is largely an unaddressed problem. A few present methods for clustering artworks principally rely on generic image feature representations derived from deep neural networks and do not specifically deal with the artistic style. In this paper, we introduce and deliberate over the notion of style-based clustering of visual artworks. Our main objective is to explore neural feature representations and architectures that can be used for style-based clustering and observe their impact and effectiveness. We develop different methods and assess their relative efficacy for style-based clustering through qualitative and quantitative analysis by applying them to four artwork corpora and four curated synthetically styled datasets. Our analysis provides some key novel insights on architectures, feature representations, and evaluation methods suitable for style-based clustering.
Abstract:Social media plays a significant role in cross-cultural communication. A vast amount of this occurs in code-mixed and multilingual form, posing a significant challenge to Natural Language Processing (NLP) tools for processing such information, like language identification, topic modeling, and named-entity recognition. To address this, we introduce a large-scale multilingual, and multi-topic dataset (MMT) collected from Twitter (1.7 million Tweets), encompassing 13 coarse-grained and 63 fine-grained topics in the Indian context. We further annotate a subset of 5,346 tweets from the MMT dataset with various Indian languages and their code-mixed counterparts. Also, we demonstrate that the currently existing tools fail to capture the linguistic diversity in MMT on two downstream tasks, i.e., topic modeling and language identification. To facilitate future research, we will make the anonymized and annotated dataset available in the public domain.
Abstract:The multi-sentential long sequence textual data unfolds several interesting research directions pertaining to natural language processing and generation. Though we observe several high-quality long-sequence datasets for English and other monolingual languages, there is no significant effort in building such resources for code-mixed languages such as Hinglish (code-mixing of Hindi-English). In this paper, we propose a novel task of identifying multi-sentential code-mixed text (MCT) from multilingual articles. As a use case, we leverage multilingual articles from two different data sources and build a first-of-its-kind multi-sentential code-mixed Hinglish dataset i.e., MUTANT. We propose a token-level language-aware pipeline and extend the existing metrics measuring the degree of code-mixing to a multi-sentential framework and automatically identify MCT in the multilingual articles. The MUTANT dataset comprises 67k articles with 85k identified Hinglish MCTs. To facilitate future research, we make the publicly available.
Abstract:In this shared task, we seek the participating teams to investigate the factors influencing the quality of the code-mixed text generation systems. We synthetically generate code-mixed Hinglish sentences using two distinct approaches and employ human annotators to rate the generation quality. We propose two subtasks, quality rating prediction and annotators' disagreement prediction of the synthetic Hinglish dataset. The proposed subtasks will put forward the reasoning and explanation of the factors influencing the quality and human perception of the code-mixed text.
Abstract:Code-mixing is a phenomenon of mixing words and phrases from two or more languages in a single utterance of speech and text. Due to the high linguistic diversity, code-mixing presents several challenges in evaluating standard natural language generation (NLG) tasks. Various widely popular metrics perform poorly with the code-mixed NLG tasks. To address this challenge, we present a metric independent evaluation pipeline MIPE that significantly improves the correlation between evaluation metrics and human judgments on the generated code-mixed text. As a use case, we demonstrate the performance of MIPE on the machine-generated Hinglish (code-mixing of Hindi and English languages) sentences from the HinGE corpus. We can extend the proposed evaluation strategy to other code-mixed language pairs, NLG tasks, and evaluation metrics with minimal to no effort.
Abstract:Text generation is a highly active area of research in the computational linguistic community. The evaluation of the generated text is a challenging task and multiple theories and metrics have been proposed over the years. Unfortunately, text generation and evaluation are relatively understudied due to the scarcity of high-quality resources in code-mixed languages where the words and phrases from multiple languages are mixed in a single utterance of text and speech. To address this challenge, we present a corpus (HinGE) for a widely popular code-mixed language Hinglish (code-mixing of Hindi and English languages). HinGE has Hinglish sentences generated by humans as well as two rule-based algorithms corresponding to the parallel Hindi-English sentences. In addition, we demonstrate the inefficacy of widely-used evaluation metrics on the code-mixed data. The HinGE dataset will facilitate the progress of natural language generation research in code-mixed languages.
Abstract:Code-mixing is a frequent communication style among multilingual speakers where they mix words and phrases from two different languages in the same utterance of text or speech. Identifying and filtering code-mixed text is a challenging task due to its co-existence with monolingual and noisy text. Over the years, several code-mixing metrics have been extensively used to identify and validate code-mixed text quality. This paper demonstrates several inherent limitations of code-mixing metrics with examples from the already existing datasets that are popularly used across various experiments.
Abstract:Multilingualism refers to the high degree of proficiency in two or more languages in the written and oral communication modes. It often results in language mixing, a.k.a. code-mixing, when a multilingual speaker switches between multiple languages in a single utterance of a text or speech. This paper discusses the current state of the NLP research, limitations, and foreseeable pitfalls in addressing five real-world applications for social good crisis management, healthcare, political campaigning, fake news, and hate speech for multilingual societies. We also propose futuristic datasets, models, and tools that can significantly advance the current research in multilingual NLP applications for the societal good. As a representative example, we consider English-Hindi code-mixing but draw similar inferences for other language pairs
Abstract:Code-mixing is the phenomenon of using multiple languages in the same utterance of a text or speech. It is a frequently used pattern of communication on various platforms such as social media sites, online gaming, product reviews, etc. Sentiment analysis of the monolingual text is a well-studied task. Code-mixing adds to the challenge of analyzing the sentiment of the text due to the non-standard writing style. We present a candidate sentence generation and selection based approach on top of the Bi-LSTM based neural classifier to classify the Hinglish code-mixed text into one of the three sentiment classes positive, negative, or neutral. The proposed approach shows an improvement in the system performance as compared to the Bi-LSTM based neural classifier. The results present an opportunity to understand various other nuances of code-mixing in the textual data, such as humor-detection, intent classification, etc.
Abstract:Code-mixing is the phenomenon of using more than one language in a sentence. It is a very frequently observed pattern of communication on social media platforms. Flexibility to use multiple languages in one text message might help to communicate efficiently with the target audience. But, it adds to the challenge of processing and understanding natural language to a much larger extent. This paper presents a parallel corpus of the 13,738 code-mixed English-Hindi sentences and their corresponding translation in English. The translations of sentences are done manually by the annotators. We are releasing the parallel corpus to facilitate future research opportunities in code-mixed machine translation. The annotated corpus is available at https://doi.org/10.5281/zenodo.3605597.