Abstract:Diffusion-based image editing models have made remarkable progress in recent years. However, achieving high-quality video editing remains a significant challenge. One major hurdle is the absence of open-source, large-scale video editing datasets based on real-world data, as constructing such datasets is both time-consuming and costly. Moreover, video data requires a significantly larger number of tokens for representation, which substantially increases the training costs for video editing models. Lastly, current video editing models offer limited interactivity, often making it difficult for users to express their editing requirements effectively in a single attempt. To address these challenges, this paper introduces a dataset VIVID-10M and a baseline model VIVID. VIVID-10M is the first large-scale hybrid image-video local editing dataset aimed at reducing data construction and model training costs, which comprises 9.7M samples that encompass a wide range of video editing tasks. VIVID is a Versatile and Interactive VIdeo local eDiting model trained on VIVID-10M, which supports entity addition, modification, and deletion. At its core, a keyframe-guided interactive video editing mechanism is proposed, enabling users to iteratively edit keyframes and propagate it to other frames, thereby reducing latency in achieving desired outcomes. Extensive experimental evaluations show that our approach achieves state-of-the-art performance in video local editing, surpassing baseline methods in both automated metrics and user studies. The VIVID-10M dataset and the VIVID editing model will be available at \url{https://inkosizhong.github.io/VIVID/}.
Abstract:Recently, more and more images are compressed and sent to the back-end devices for the machine analysis tasks~(\textit{e.g.,} object detection) instead of being purely watched by humans. However, most traditional or learned image codecs are designed to minimize the distortion of the human visual system without considering the increased demand from machine vision systems. In this work, we propose a preprocessing enhanced image compression method for machine vision tasks to address this challenge. Instead of relying on the learned image codecs for end-to-end optimization, our framework is built upon the traditional non-differential codecs, which means it is standard compatible and can be easily deployed in practical applications. Specifically, we propose a neural preprocessing module before the encoder to maintain the useful semantic information for the downstream tasks and suppress the irrelevant information for bitrate saving. Furthermore, our neural preprocessing module is quantization adaptive and can be used in different compression ratios. More importantly, to jointly optimize the preprocessing module with the downstream machine vision tasks, we introduce the proxy network for the traditional non-differential codecs in the back-propagation stage. We provide extensive experiments by evaluating our compression method for two representative downstream tasks with different backbone networks. Experimental results show our method achieves a better trade-off between the coding bitrate and the performance of the downstream machine vision tasks by saving about 20% bitrate.