Abstract:Video question answering (VideoQA) is designed to answer a given question based on a relevant video clip. The current available large-scale datasets have made it possible to formulate VideoQA as the joint understanding of visual and language information. However, this training procedure is costly and still less competent with human performance. In this paper, we investigate a transfer learning method by the introduction of domain-agnostic knowledge and domain-specific knowledge. First, we develop a novel transfer learning framework, which finetunes the pre-trained model by applying domain-agnostic knowledge as the medium. Second, we construct a new VideoQA dataset with 21,412 human-generated question-answer samples for comparable transfer of knowledge. Our experiments show that: (i) domain-agnostic knowledge is transferable and (ii) our proposed transfer learning framework can boost VideoQA performance effectively.
Abstract:Multi-label classification (MLC) studies the problem where each instance is associated with multiple relevant labels, which leads to the exponential growth of output space. MLC encourages a popular framework named label compression (LC) for capturing label dependency with dimension reduction. Nevertheless, most existing LC methods failed to consider the influence of the feature space or misguided by original problematic features, so that may result in performance degeneration. In this paper, we present a compact learning (CL) framework to embed the features and labels simultaneously and with mutual guidance. The proposal is a versatile concept, hence the embedding way is arbitrary and independent of the subsequent learning process. Following its spirit, a simple yet effective implementation called compact multi-label learning (CMLL) is proposed to learn a compact low-dimensional representation for both spaces. CMLL maximizes the dependence between the embedded spaces of the labels and features, and minimizes the loss of label space recovery concurrently. Theoretically, we provide a general analysis for different embedding methods. Practically, we conduct extensive experiments to validate the effectiveness of the proposed method.