Abstract:Cybersickness remains a significant barrier to the widespread adoption of immersive virtual reality (VR) experiences, as it can greatly disrupt user engagement and comfort. Research has shown that cybersickness can significantly be reflected in head and eye tracking data, along with other physiological data (e.g., TMP, EDA, and BMP). Despite the application of deep learning techniques such as CNNs and LSTMs, these models often struggle to capture the complex interactions between multiple data modalities and lack the capacity for real-time inference, limiting their practical application. Addressing this gap, we propose a lightweight model that leverages a transformer-based encoder with sparse self-attention to process bio-signal features and a PP-TSN network for video feature extraction. These features are then integrated via a cross-modal fusion module, creating a video-aware bio-signal representation that supports cybersickness prediction based on both visual and bio-signal inputs. Our model, trained with a lightweight framework, was validated on a public dataset containing eye and head tracking data, physiological data, and VR video, and demonstrated state-of-the-art performance in cybersickness prediction, achieving a high accuracy of 93.13\% using only VR video inputs. These findings suggest that our approach not only enables effective, real-time cybersickness prediction but also addresses the longstanding issue of modality interaction in VR environments. This advancement provides a foundation for future research on multimodal data integration in VR, potentially leading to more personalized, comfortable and widely accessible VR experiences.
Abstract:The metaverse, enormous virtual-physical cyberspace, has brought unprecedented opportunities for artists to blend every corner of our physical surroundings with digital creativity. This article conducts a comprehensive survey on computational arts, in which seven critical topics are relevant to the metaverse, describing novel artworks in blended virtual-physical realities. The topics first cover the building elements for the metaverse, e.g., virtual scenes and characters, auditory, textual elements. Next, several remarkable types of novel creations in the expanded horizons of metaverse cyberspace have been reflected, such as immersive arts, robotic arts, and other user-centric approaches fuelling contemporary creative outputs. Finally, we propose several research agendas: democratising computational arts, digital privacy, and safety for metaverse artists, ownership recognition for digital artworks, technological challenges, and so on. The survey also serves as introductory material for artists and metaverse technologists to begin creations in the realm of surrealistic cyberspace.