Abstract:This contribution analyzes the self-perception and political biases of OpenAI's Large Language Model ChatGPT. Taking into account the first small-scale reports and studies that have emerged, claiming that ChatGPT is politically biased towards progressive and libertarian points of view, this contribution aims to provide further clarity on this subject. For this purpose, ChatGPT was asked to answer the questions posed by the political compass test as well as similar questionnaires that are specific to the respective politics of the G7 member states. These eight tests were repeated ten times each and revealed that ChatGPT seems to hold a bias towards progressive views. The political compass test revealed a bias towards progressive and libertarian views, with the average coordinates on the political compass being (-6.48, -5.99) (with (0, 0) the center of the compass, i.e., centrism and the axes ranging from -10 to 10), supporting the claims of prior research. The political questionnaires for the G7 member states indicated a bias towards progressive views but no significant bias between authoritarian and libertarian views, contradicting the findings of prior reports, with the average coordinates being (-3.27, 0.58). In addition, ChatGPT's Big Five personality traits were tested using the OCEAN test and its personality type was queried using the Myers-Briggs Type Indicator (MBTI) test. Finally, the maliciousness of ChatGPT was evaluated using the Dark Factor test. These three tests were also repeated ten times each, revealing that ChatGPT perceives itself as highly open and agreeable, has the Myers-Briggs personality type ENFJ, and is among the 15% of test-takers with the least pronounced dark traits.
Abstract:This contribution presents the TOMIE framework (Tracking Of Multiple Industrial Entities), a framework for the continuous tracking of industrial entities (e.g., pallets, crates, barrels) over a network of, in this example, six RGB cameras. This framework, makes use of multiple sensors, data pipelines and data annotation procedures, and is described in detail in this contribution. With the vision of a fully automated tracking system for industrial entities in mind, it enables researchers to efficiently capture high quality data in an industrial setting. Using this framework, an image dataset, the TOMIE dataset, is created, which at the same time is used to gauge the framework's validity. This dataset contains annotation files for 112,860 frames and 640,936 entity instances that are captured from a set of six cameras that perceive a large indoor space. This dataset out-scales comparable datasets by a factor of four and is made up of scenarios, drawn from industrial applications from the sector of warehousing. Three tracking algorithms, namely ByteTrack, Bot-Sort and SiamMOT are applied to this dataset, serving as a proof-of-concept and providing tracking results that are comparable to the state of the art.
Abstract:Human-technology collaboration relies on verbal and non-verbal communication. Machines must be able to detect and understand the movements of humans to facilitate non-verbal communication. In this article, we introduce ongoing research on human activity recognition in intralogistics, and show how it can be applied in industrial settings. We show how semantic attributes can be used to describe human activities flexibly and how context informantion increases the performance of classifiers to recognise them automatically. Beyond that, we present a concept based on a cyber-physical twin that can reduce the effort and time necessary to create a training dataset for human activity recognition. In the future, it will be possible to train a classifier solely with realistic simulation data, while maintaining or even increasing the classification performance.