Abstract:To understand the complexity of global events, one must navigate a web of interwoven sub-events, identifying those most impactful elements within the larger, abstract macro-event framework at play. This concept can be extended to the field of natural language processing (NLP) through the creation of structured event schemas which can serve as representations of these abstract events. Central to our approach is the Schema Curation Interface 3.0 (SCI 3.0), a web application that facilitates real-time editing of event schema properties within a generated graph e.g., adding, removing, or editing sub-events, entities, and relations directly through an interface.
Abstract:In this paper, we present RESIN-EDITOR, an interactive event graph visualizer and editor designed for analyzing complex events. Our RESIN-EDITOR system allows users to render and freely edit hierarchical event graphs extracted from multimedia and multi-document news clusters with guidance from human-curated event schemas. RESIN-EDITOR's unique features include hierarchical graph visualization, comprehensive source tracing, and interactive user editing, which is more powerful and versatile than existing Information Extraction (IE) visualization tools. In our evaluation of RESIN-EDITOR, we demonstrate ways in which our tool is effective in understanding complex events and enhancing system performance. The source code, a video demonstration, and a live website for RESIN-EDITOR have been made publicly available.
Abstract:Schema induction builds a graph representation explaining how events unfold in a scenario. Existing approaches have been based on information retrieval (IR) and information extraction(IE), often with limited human curation. We demonstrate a human-in-the-loop schema induction system powered by GPT-3. We first describe the different modules of our system, including prompting to generate schematic elements, manual edit of those elements, and conversion of those into a schema graph. By qualitatively comparing our system to previous ones, we show that our system not only transfers to new domains more easily than previous approaches, but also reduces efforts of human curation thanks to our interactive interface.