Abstract:Background: Rim+ lesions in multiple sclerosis (MS), detectable via Quantitative Susceptibility Mapping (QSM), correlate with increased disability. Existing literature lacks quantitative analysis of these lesions. We introduce RimSet for quantitative identification and characterization of rim+ lesions on QSM. Methods: RimSet combines RimSeg, an unsupervised segmentation method using level-set methodology, and radiomic measurements with Local Binary Pattern texture descriptors. We validated RimSet using simulated QSM images and an in vivo dataset of 172 MS subjects with 177 rim+ and 3986 rim-lesions. Results: RimSeg achieved a 78.7% Dice score against the ground truth, with challenges in partial rim lesions. RimSet detected rim+ lesions with a partial ROC AUC of 0.808 and PR AUC of 0.737, surpassing existing methods. QSMRim-Net showed the lowest mean square error (0.85) and high correlation (0.91; 95% CI: 0.88, 0.93) with expert annotations at the subject level.
Abstract:To develop a tissue field filtering algorithm, called maximum Spherical Mean Value (mSMV), for reducing shadow artifacts in quantitative susceptibility mapping (QSM) of the brain without requiring brain tissue erosion. Residual background field is a major source of shadow artifacts in QSM. The mSMV algorithm filters large field values near the border, where the maximum value of the harmonic background field is located. The effectiveness of mSMV for artifact removal was evaluated by comparing with existing QSM algorithms in a simulated numerical brain, 11 healthy volunteers, by assessing image quality in routine clinical patient study $(n=43)$, and by measuring lesion susceptibility values in multiple sclerosis patients $(n=50)$, a total of $n=93$ patients. Numerical simulation showed that mSMV reduces shadow artifacts and improves QSM accuracy. Better shadow reduction, as demonstrated by lower QSM variation in the gray matter and higher QSM image quality score, was also observed in healthy subjects and in patients with hemorrhages, stroke and multiple sclerosis. The mSMV algorithm allows reconstruction of QSMs that are equivalent to those obtained using SMV-filtered dipole inversion without eroding the volume of interest.
Abstract:Multiple sclerosis (MS) lesions occupy a small fraction of the brain volume, and are heterogeneous with regards to shape, size and locations, which poses a great challenge for training deep learning based segmentation models. We proposed a new geometric loss formula to address the data imbalance and exploit the geometric property of MS lesions. We showed that traditional region-based and boundary-aware loss functions can be associated with the formula. We further develop and instantiate two loss functions containing first- and second-order geometric information of lesion regions to enforce regularization on optimizing deep segmentation models. Experimental results on two MS lesion datasets with different scales, acquisition protocols and resolutions demonstrated the superiority of our proposed methods compared to other state-of-the-art methods.
Abstract:Brain lesion volume measured on T2 weighted MRI images is a clinically important disease marker in multiple sclerosis (MS). Manual delineation of MS lesions is a time-consuming and highly operator-dependent task, which is influenced by lesion size, shape and conspicuity. Recently, automated lesion segmentation algorithms based on deep neural networks have been developed with promising results. In this paper, we propose a novel recurrent slice-wise attention network (RSANet), which models 3D MRI images as sequences of slices and captures long-range dependencies through a recurrent manner to utilize contextual information of MS lesions. Experiments on a dataset with 43 patients show that the proposed method outperforms the state-of-the-art approaches. Our implementation is available online at https://github.com/tinymilky/RSANet.