Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
Abstract:The transformer architecture has revolutionized bioinformatics and driven progress in the understanding and prediction of the properties of biomolecules. Almost all research on large-scale biosequence transformers has focused on one domain at a time (single-omic), usually nucleotides or peptides. These models have seen incredible success in downstream tasks in each domain and have achieved particularly noteworthy breakthroughs in sequences of peptides and structural modeling. However, these single-omic models are naturally incapable of modeling multi-omic tasks, one of the most biologically critical being nucleotide-peptide interactions. We present our work training the first multi-omic nucleotide-peptide foundation models. We show that these multi-omic models (MOMs) can learn joint representations between various single-omic distributions that are emergently consistent with the Central Dogma of molecular biology, despite only being trained on unlabeled biosequences. We further demonstrate that MOMs can be fine-tuned to achieve state-of-the-art results on peptide-nucleotide interaction tasks, namely predicting the change in Gibbs free energy ({\Delta}G) of the binding interaction between a given oligonucleotide and peptide, as well as the effect on this binding interaction due to mutations in the oligonucleotide sequence ({\Delta}{\Delta}G). Remarkably, we show that multi-omic biosequence transformers emergently learn useful structural information without any prior structural training, allowing us to predict which peptide residues are most involved in the peptide-nucleotide binding interaction. Lastly, we provide evidence that multi-omic biosequence models are non-inferior to foundation models trained on single-omics distributions, suggesting a more generalized or foundational approach to building these models.
Abstract:Objectives Computer vision (CV) is a field of artificial intelligence that enables machines to interpret and understand images and videos. CV has the potential to be of assistance in the operating room (OR) to track surgical instruments. We built a CV algorithm for identifying surgical instruments in the neurosurgical operating room as a potential solution for surgical instrument tracking and management to decrease surgical waste and opening of unnecessary tools. Methods We collected 1660 images of 27 commonly used neurosurgical instruments. Images were labeled using the VGG Image Annotator and split into 80% training and 20% testing sets in order to train a U-Net Convolutional Neural Network using 5-fold cross validation. Results Our U-Net achieved a tool identification accuracy of 80-100% when distinguishing 25 classes of instruments, with 19/25 classes having accuracy over 90%. The model performance was not adequate for sub classifying Adson, Gerald, and Debakey forceps, which had accuracies of 60-80%. Conclusions We demonstrated the viability of using machine learning to accurately identify surgical instruments. Instrument identification could help optimize surgical tray packing, decrease tool usage and waste, decrease incidence of instrument misplacement events, and assist in timing of routine instrument maintenance. More training data will be needed to increase accuracy across all surgical instruments that would appear in a neurosurgical operating room. Such technology has the potential to be used as a method to be used for proving what tools are truly needed in each type of operation allowing surgeons across the world to do more with less.
Abstract:Photoplethysmography (PPG) provides a low-cost, non-invasive method to continuously monitor various cardiovascular parameters. PPG signals are generated by wearable devices and frequently contain large artifacts caused by external factors, such as motion of the human subject. In order to ensure robust and accurate extraction of physiological parameters, corrupted areas of the signal need to be identified and handled appropriately. Previous methodology relied either on handcrafted feature detectors or signal metrics which yield sub-optimal performance, or relied on machine learning techniques such as deep neural networks (DNN) which lack interpretability and are computationally and memory intensive. In this work, we present a novel method to learn a small set of interpretable convolutional kernels that has performance similar to -- and often better than -- the state-of-the-art DNN approach with several orders of magnitude fewer parameters. This work allows for efficient, robust, and interpretable signal quality assessment and artifact segmentation on low-power devices.