Abstract:Semantic communications are considered a promising beyond-Shannon/bit paradigm to reduce network traffic and increase reliability, thus making wireless networks more energy efficient, robust, and sustainable. However, the performance is limited by the efficiency of the semantic transceivers, i.e., the achievable "similarity" between the transmitted and received signals. Under strict similarity conditions, semantic transmission may not be applicable and bit communication is mandatory. In this paper, for the first time in the literature, we propose a multi-carrier Hybrid Semantic-Shannon communication system where, without loss of generality, the case of text transmission is investigated. To this end, a joint semantic-bit transmission selection and power allocation optimization problem is formulated, aiming to minimize two transmission delay metrics widely used in the literature, subject to strict similarity thresholds. Despite their non-convexity, both problems are decomposed into a convex and a mixed linear integer programming problem by using alternating optimization, both of which can be solved optimally. Furthermore, to improve the performance of the proposed hybrid schemes, a novel association of text sentences to subcarriers is proposed based on the data size of the sentences and the channel gains of the subcarriers. We show that the proposed association is optimal in terms of transmission delay. Numerical simulations verify the effectiveness of the proposed hybrid semantic-bit communication scheme and the derived sentence-to-subcarrier association, and provide useful insights into the design parameters of such systems.
Abstract:In response to the increasing number of devices anticipated in next-generation networks, a shift toward over-the-air (OTA) computing has been proposed. Leveraging the superposition of multiple access channels, OTA computing enables efficient resource management by supporting simultaneous uncoded transmission in the time and the frequency domain. Thus, to advance the integration of OTA computing, our study presents a theoretical analysis addressing practical issues encountered in current digital communication transceivers, such as time sampling error and intersymbol interference (ISI). To this end, we examine the theoretical mean squared error (MSE) for OTA transmission under time sampling error and ISI, while also exploring methods for minimizing the MSE in the OTA transmission. Utilizing alternating optimization, we also derive optimal power policies for both the devices and the base station. Additionally, we propose a novel deep neural network (DNN)-based approach to design waveforms enhancing OTA transmission performance under time sampling error and ISI. To ensure fair comparison with existing waveforms like the raised cosine (RC) and the better-than-raised-cosine (BRTC), we incorporate a custom loss function integrating energy and bandwidth constraints, along with practical design considerations such as waveform symmetry. Simulation results validate our theoretical analysis and demonstrate performance gains of the designed pulse over RC and BTRC waveforms. To facilitate testing of our results without necessitating the DNN structure recreation, we provide curve fitting parameters for select DNN-based waveforms as well.
Abstract:In the evolving landscape of sixth-generation (6G) wireless networks, which demand ultra high data rates, this study introduces the concept of super constellation communications. Also, we present super amplitude phase shift keying (SAPSK), an innovative modulation technique designed to achieve these ultra high data rate demands. SAPSK is complemented by the generalized polar distance detector (GPD-D), which approximates the optimal maximum likelihood detector in channels with Gaussian phase noise (GPN). By leveraging the decision regions formulated by GPD-D, a tight closed-form approximation for the symbol error probability (SEP) of SAPSK constellations is derived, while a detection algorithm with O(1) time complexity is developed to ensure fast and efficient SAPSK symbol detection. Finally, the theoretical performance of SAPSK and the efficiency of the proposed O(1) algorithm are validated by numerical simulations, highlighting both its superiority in terms of SEP compared to various constellations and its practical advantages in terms of fast and accurate symbol detection.
Abstract:In the evolving landscape of sixth-generation (6G) wireless networks, unmanned aerial vehicles (UAVs) have emerged as transformative tools for dynamic and adaptive connectivity. However, dynamically adjusting their position to offer favorable communication channels introduces operational challenges in terms of energy consumption, especially when integrating advanced communication technologies like reconfigurable intelligent surfaces (RISs) and full-duplex relays (FDRs). To this end, by recognizing the pivotal role of UAV mobility, the paper introduces an energy-aware trajectory design for UAV-mounted RISs and UAV-mounted FDRs using the decode and forward (DF) protocol, aiming to maximize the network minimum rate and enhance user fairness, while taking into consideration the available on-board energy. Specifically, this work highlights their distinct energy consumption characteristics and their associated integration challenges by developing appropriate energy consumption models for both UAV-mounted RISs and FDRs that capture the intricate relationship between key factors such as weight, and their operational characteristics. Furthermore, a joint time-division multiple access (TDMA) user scheduling-UAV trajectory optimization problem is formulated, considering the power dynamics of both systems, while assuring that the UAV energy is not depleted mid-air. Finally, simulation results underscore the importance of energy considerations in determining the optimal trajectory and scheduling and provide insights into the performance comparison of UAV-mounted RISs and FDRs in UAV-assisted wireless networks.
Abstract:A primary objective of the forthcoming sixth generation (6G) of wireless networking is to support demanding applications, while ensuring energy efficiency. Programmable wireless environments (PWEs) have emerged as a promising solution, leveraging reconfigurable intelligent surfaces (RISs), to control wireless propagation and deliver exceptional quality-ofservice. In this paper, we analyze the performance of a network supported by zero-energy RISs (zeRISs), which harvest energy for their operation and contribute to the realization of PWEs. Specifically, we investigate joint energy-data rate outage probability and the energy efficiency of a zeRIS-assisted communication system by employing three harvest-and-reflect (HaR) methods, i) power splitting, ii) time switching, and iii) element splitting. Furthermore, we consider two zeRIS deployment strategies, namely BS-side zeRIS and UE-side zeRIS. Simulation results validate the provided analysis and examine which HaR method performs better depending on the zeRIS placement. Finally, valuable insights and conclusions for the performance of zeRISassisted wireless networks are drawn from the presented results.
Abstract:With the exponential increase of the number of devices in the communication ecosystem toward the upcoming sixth generation (6G) of wireless networks, more enabling technologies and potential wireless architectures are necessary to fulfill the networking requirements of high throughput, massive connectivity, ultra reliability, and heterogeneous Quality of Service (QoS). To this end, schemes based on rate-splitting multiple access (RSMA) are expected to play a pivotal role in next generation communication networks. In this work, we investigate an uplink network consisting of a primary user (PU) and a secondary user (SU) and, by introducing the concept of cognitive radio (CR) into the RSMA framework, a protocol based on RSMA is proposed. This protocol aims to serve the SU in a resource block which is originally allocated solely for the PU without negatively affecting the QoS of the PU. Moreover, a similar but simpler protocol based on successive interference cancellation is proposed. We derive closed-form expressions for the outage probability of the SU for the two proposed protocols, ensuring that there exists no negative impact for the PU. To obtain further insights, asymptotic analysis is performed and the corresponding diversity gains are presented. In the numerical results, we validate the the theoretical analysis and illustrate the superiority of the proposed protocols over two benchmark schemes.
Abstract:The effective integration of unmanned aerial vehicles (UAVs) in future wireless communication systems depends on the conscious use of their limited energy, which constrains their flight time. Reconfigurable intelligent surfaces (RISs) can be used in combination with UAVs with the aim to improve the communication performance without increasing complexity at the UAVs' side. In this paper, we propose a synergetic UAV-RIS communication system, utilizing a UAV with a directional antenna aiming to the RIS. Also, we present the link budget analysis and closed-form expressions for the outage probability as well as for an important second order statistical parameter of the proposed synergetic UAV-RIS communication system, the average outage duration. Finally, numerical results illustrate the effectiveness of the proposed synergetic system.
Abstract:Reconfigurable intelligent surfaces (RISs) intend to improve significantly the performance of future wireless networks, by controlling the wireless propagation medium through elements that can shift the phase of the reflected signals. Although ideally the signals reflected from a RIS are added coherently at the receiver, this is very challenging in practice due to the requirement for perfect channel state information (CSI) at the RIS and phase control. To facilitate the performance analysis of more practical RIS-assisted systems, first, we present novel closed-form expressions for the probability density function, the cumulative distribution function, the moments, and the characteristic function of the distribution of the sum of double-Nakagami-m random vectors, whose amplitudes follow the double-Nakagami-m distribution, i.e., the distribution of the product of two random variables following the Nakagami-m distribution, and phases are circular uniformly distributed. We also consider a special case of this distribution, namely the distribution of the sum of Rayleigh-Nakagami-m random vectors. Then, we exploit these expressions to investigate the performance of the RIS-assisted composite channel, assuming that the two links undergo Nakagami-m fading and the equivalent phase follows the uniform distribution, which corresponds to the case where CSI is not available at the RIS and leads to a lower bound of the performance of a system with CSI. Closed-form expressions for the outage probability, the average received signal-to-noise ratio, the ergodic capacity, the bit error probability, the amount of fading, and the channel quality estimation index are provided to evaluate the performance of the considered system. These metrics are also derived for the practical special case where one of the two links undergoes Rayleigh fading.
Abstract:Machine learning (ML) empowers biomedical systems with the capability to optimize their performance through modeling of the available data extremely well, without using strong assumptions about the modeled system. Especially in nano-scale biosystems, where the generated data sets are too vast and complex to mentally parse without computational assist, ML is instrumental in analyzing and extracting new insights, accelerating material and structure discoveries and designing experience as well as supporting nano-scale communications and networks. However, despite these efforts, the use of ML in nano-scale biomedical engineering remains still under-explored in certain areas and research challenges are still open in fields such as structure and material design and simulations, communications and signal processing, and bio-medicine applications. In this article, we review the existing research regarding the use of ML in nano-scale biomedical engineering. In more detail, we first identify and discuss the main challenges that can be formulated as ML problems. These challenges are classified in the three aforementioned main categories. Next, we discuss the state of the art ML methodologies that are used to countermeasure the aforementioned challenges. For each of the presented methodologies, special emphasis is given to its principles, applications and limitations. Finally, we conclude the article with insightful discussions, that reveals research gaps and highlights possible future research directions.