Abstract:In the search for new particles in high-energy physics, it is crucial to select the Signal Region (SR) in such a way that it is enriched with signal events if they are present. While most existing search methods set the region relying on prior domain knowledge, it may be unavailable for a completely novel particle that falls outside the current scope of understanding. We address this issue by proposing a method built upon a model-agnostic but often realistic assumption about the localized topology of the signal events, in which they are concentrated in a certain area of the feature space. Considering the signal component as a localized high-frequency feature, our approach employs the notion of a low-pass filter. We define the SR as an area which is most affected when the observed events are smeared with additive random noise. We overcome challenges in density estimation in the high-dimensional feature space by learning the density ratio of events that potentially include a signal to the complementary observation of events that closely resemble the target events but are free of any signals. By applying our method to simulated $\mathrm{HH} \rightarrow 4b$ events, we demonstrate that the method can efficiently identify a data-driven SR in a high-dimensional feature space in which a high portion of signal events concentrate.
Abstract:Neural networks often suffer from a feature preference problem, where they tend to overly rely on specific features to solve a task while disregarding other features, even if those neglected features are essential for the task. Feature preference problems have primarily been investigated in classification task. However, we observe that feature preference occurs in high-dimensional regression task, specifically, source separation. To mitigate feature preference in source separation, we propose FEAture BAlancing by Suppressing Easy feature (FEABASE). This approach enables efficient data utilization by learning hidden information about the neglected feature. We evaluate our method in a multi-channel source separation task, where feature preference between spatial feature and timbre feature appears.
Abstract:Contrastive learning has gained significant attention as a method for self-supervised learning. The contrastive loss function ensures that embeddings of positive sample pairs (e.g., different samples from the same class or different views of the same object) are similar, while embeddings of negative pairs are dissimilar. Practical constraints such as large memory requirements make it challenging to consider all possible positive and negative pairs, leading to the use of mini-batch optimization. In this paper, we investigate the theoretical aspects of mini-batch optimization in contrastive learning. We show that mini-batch optimization is equivalent to full-batch optimization if and only if all $\binom{N}{B}$ mini-batches are selected, while sub-optimality may arise when examining only a subset. We then demonstrate that utilizing high-loss mini-batches can speed up SGD convergence and propose a spectral clustering-based approach for identifying these high-loss mini-batches. Our experimental results validate our theoretical findings and demonstrate that our proposed algorithm outperforms vanilla SGD in practically relevant settings, providing a better understanding of mini-batch optimization in contrastive learning.