Abstract:With the rising number of interconnected devices and sensors, modeling distributed sensor networks is of increasing interest. Recurrent neural networks (RNN) are considered particularly well suited for modeling sensory and streaming data. When predicting future behavior, incorporating information from neighboring sensor stations is often beneficial. We propose a new RNN based architecture for context specific information fusion across multiple spatially distributed sensor stations. Hereby, latent representations of multiple local models, each modeling one sensor station, are jointed and weighted, according to their importance for the prediction. The particular importance is assessed depending on the current context using a separate attention function. We demonstrate the effectiveness of our model on three different real-world sensor network datasets.
Abstract:Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.