Abstract:This paper introduces a new algorithm for unsupervised learning of keypoint detectors and descriptors, which demonstrates fast convergence and good performance across different datasets. The training procedure uses homographic transformation of images. The proposed model learns to detect points and generate descriptors on pairs of transformed images, which are easy for it to distinguish and repeatedly detect. The trained model follows SuperPoint architecture for ease of comparison, and demonstrates similar performance on natural images from HPatches dataset, and better performance on retina images from Fundus Image Registration Dataset, which contain low number of corner-like features. For HPatches and other datasets, coverage was also computed to provide better estimation of model quality.
Abstract:Probabilistic logic reasoning is a central component of such cognitive architectures as OpenCog. However, as an integrative architecture, OpenCog facilitates cognitive synergy via hybridization of different inference methods. In this paper, we introduce a differentiable version of Probabilistic Logic networks, which rules operate over tensor truth values in such a way that a chain of reasoning steps constructs a computation graph over tensors that accepts truth values of premises from the knowledge base as input and produces truth values of conclusions as output. This allows for both learning truth values of premises and formulas for rules (specified in a form with trainable weights) by backpropagation combining subsymbolic optimization and symbolic reasoning.
Abstract:Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.