Abstract:Large Language Models (LLMs) like the GPT and LLaMA families have demonstrated exceptional capabilities in capturing and condensing critical contextual information and achieving state-of-the-art performance in the summarization task. However, community concerns about these models' hallucination issues continue to rise. LLMs sometimes generate factually hallucinated summaries, which can be extremely harmful in the clinical domain NLP tasks (e.g., clinical note summarization), where factually incorrect statements can lead to critically erroneous diagnoses. Fine-tuning LLMs using human feedback has shown the promise of aligning LLMs to be factually consistent during generation, but such training procedure requires high-quality human-annotated data, which can be extremely expensive to get in the clinical domain. In this work, we propose a new pipeline using ChatGPT instead of human experts to generate high-quality feedback data for improving factual consistency in the clinical note summarization task. We focus specifically on edit feedback because recent work discusses the shortcomings of human alignment via preference feedback in complex situations (such as clinical NLP tasks that require extensive expert knowledge), as well as some advantages of collecting edit feedback from domain experts. In addition, although GPT has reached the expert level in many clinical NLP tasks (e.g., USMLE QA), there is not much previous work discussing whether GPT can generate expert-level edit feedback for LMs in the clinical note summarization task. We hope to fill this gap. Finally, our evaluations demonstrate the potential use of GPT edits in human alignment, especially from a factuality perspective.
Abstract:Click-through rate (CTR) prediction plays a pivotal role in the success of recommendations. Inspired by the recent thriving of language models (LMs), a surge of works improve prediction by organizing user behavior data in a \textbf{textual} format and using LMs to understand user interest at a semantic level. While promising, these works have to truncate the textual data to reduce the quadratic computational overhead of self-attention in LMs. However, it has been studied that long user behavior data can significantly benefit CTR prediction. In addition, these works typically condense user diverse interests into a single feature vector, which hinders the expressive capability of the model. In this paper, we propose a \textbf{T}extual \textbf{B}ehavior-based \textbf{I}nterest Chunking \textbf{N}etwork (TBIN), which tackles the above limitations by combining an efficient locality-sensitive hashing algorithm and a shifted chunk-based self-attention. The resulting user diverse interests are dynamically activated, producing user interest representation towards the target item. Finally, the results of both offline and online experiments on real-world food recommendation platform demonstrate the effectiveness of TBIN.
Abstract:An accurate solar wind speed model is important for space weather predictions, catastrophic event warnings, and other issues concerning solar wind - magnetosphere interaction. In this work, we construct a model based on convolutional neural network (CNN) and Potential Field Source Surface (PFSS) magnetograms, considering a solar wind source surface of $R_{\rm SS}=2.5R_\odot$, aiming to predict the solar wind speed at the Lagrange 1 (L1) point of the Sun-Earth system. The input of our model consists of four Potential Field Source Surface (PFSS) magnetograms at $R_{\rm SS}$, which are 7, 6, 5, and 4 days before the target epoch. Reduced magnetograms are used to promote the model's efficiency. We use the Global Oscillation Network Group (GONG) photospheric magnetograms and the potential field extrapolation model to generate PFSS magnetograms at the source surface. The model provides predictions of the continuous test dataset with an averaged correlation coefficient (CC) of 0.52 and a root mean square error (RMSE) of 80.8 km/s in an eight-fold validation training scheme with the time resolution of the data as small as one hour. The model also has the potential to forecast high speed streams of the solar wind, which can be quantified with a general threat score of 0.39.
Abstract:Click-through rate (CTR) prediction is crucial in recommendation and online advertising systems. Existing methods usually model user behaviors, while ignoring the informative context which influences the user to make a click decision, e.g., click pages and pre-ranking candidates that inform inferences about user interests, leading to suboptimal performance. In this paper, we propose a Decision-Making Context Interaction Network (DCIN), which deploys a carefully designed Context Interaction Unit (CIU) to learn decision-making contexts and thus benefits CTR prediction. In addition, the relationship between different decision-making context sources is explored by the proposed Adaptive Interest Aggregation Unit (AIAU) to improve CTR prediction further. In the experiments on public and industrial datasets, DCIN significantly outperforms the state-of-the-art methods. Notably, the model has obtained the improvement of CTR+2.9%/CPM+2.1%/GMV+1.5% for online A/B testing and served the main traffic of Meituan Waimai advertising system.