Abstract:Federated Learning (FL) mitigates privacy leakage in decentralized machine learning by allowing multiple clients to train collaboratively locally. However, dynamic mobile networks with high mobility, intermittent connectivity, and bandwidth limitation severely hinder model updates to the cloud server. Although previous studies have typically addressed user mobility issue through task reassignment or predictive modeling, frequent migrations may result in high communication overhead. Overcoming this obstacle involves not only dealing with resource constraints, but also finding ways to mitigate the challenges posed by user migrations. We therefore propose an intertemporal incentive framework, FedCross, which ensures the continuity of FL tasks by migrating interrupted training tasks to feasible mobile devices. Specifically, FedCross comprises two distinct stages. In Stage 1, we address the task allocation problem across regions under resource constraints by employing a multi-objective migration algorithm to quantify the optimal task receivers. Moreover, we adopt evolutionary game theory to capture the dynamic decision-making of users, forecasting the evolution of user proportions across different regions to mitigate frequent migrations. In Stage 2, we utilize a procurement auction mechanism to allocate rewards among base stations, ensuring that those providing high-quality models receive optimal compensation. This approach incentivizes sustained user participation, thereby ensuring the overall feasibility of FedCross. Finally, experimental results validate the theoretical soundness of FedCross and demonstrate its significant reduction in communication overhead.
Abstract:Due to the sensitivity of data, federated learning (FL) is employed to enable distributed machine learning while safeguarding data privacy and accommodating the requirements of various devices. However, in the context of semi-decentralized federated learning (SD-FL), clients' communication and training states are dynamic. This variability arises from local training fluctuations, heterogeneous data distributions, and intermittent client participation. Most existing studies primarily focus on stable client states, neglecting the dynamic challenges present in real-world scenarios. To tackle this issue, we propose a trust-aware client scheduling mechanism (TRAIL) that assesses client states and contributions, enhancing model training efficiency through selective client participation. Our focus is on a semi-decentralized federated learning framework where edge servers and clients train a shared global model using unreliable intra-cluster model aggregation and inter-cluster model consensus. First, we develop an adaptive hidden semi-Markov model (AHSMM) to estimate clients' communication states and contributions. Next, we address a client-server association optimization problem to minimize global training loss. Using convergence analysis, we propose a greedy client scheduling algorithm. Finally, our experiments conducted on real-world datasets demonstrate that TRAIL outperforms state-of-the-art baselines, achieving an improvement of 8.7\% in test accuracy and a reduction of 15.3\% in training loss.