Abstract:Federated learning (FL) has emerged as a promising distributed machine learning (ML) that enables collaborative model training across clients without exposing raw data, thereby preserving user privacy and reducing communication costs. Despite these benefits, traditional single-server FL suffers from high communication latency due to the aggregation of models from a large number of clients. While multi-server FL distributes workloads across edge servers, overlapping client coverage and uncoordinated selection often lead to resource contention, causing bandwidth conflicts and training failures. To address these limitations, we propose a decentralized reinforcement learning with conflict risk prediction, named RL CRP, to optimize client selection in multi-server FL systems. Specifically, each server estimates the likelihood of client selection conflicts using a categorical hidden Markov model based on its sparse historical client selection sequence. Then, a fairness-aware reward mechanism is incorporated to promote long-term client participation for minimizing training latency and resource contention. Extensive experiments demonstrate that the proposed RL-CRP framework effectively reduces inter-server conflicts and significantly improves training efficiency in terms of convergence speed and communication cost.
Abstract:The expanding scale of neural networks poses a major challenge for distributed machine learning, particularly under limited communication resources. While split learning (SL) alleviates client computational burden by distributing model layers between clients and server, it incurs substantial communication overhead from frequent transmission of intermediate activations and gradients. To tackle this issue, we propose NSC-SL, a bandwidth-aware adaptive compression algorithm for communication-efficient SL. NSC-SL first dynamically determines the optimal rank of low-rank approximation based on the singular value distribution for adapting real-time bandwidth constraints. Then, NSC-SL performs error-compensated tensor factorization using alternating orthogonal iteration with residual feedback, effectively minimizing truncation loss. The collaborative mechanisms enable NSC-SL to achieve high compression ratios while preserving semantic-rich information essential for convergence. Extensive experiments demonstrate the superb performance of NSC-SL.




Abstract:The Circle of Willis (CoW) is an important network of arteries connecting major circulations of the brain. Its vascular architecture is believed to affect the risk, severity, and clinical outcome of serious neuro-vascular diseases. However, characterizing the highly variable CoW anatomy is still a manual and time-consuming expert task. The CoW is usually imaged by two angiographic imaging modalities, magnetic resonance angiography (MRA) and computed tomography angiography (CTA), but there exist limited public datasets with annotations on CoW anatomy, especially for CTA. Therefore we organized the TopCoW Challenge in 2023 with the release of an annotated CoW dataset and invited submissions worldwide for the CoW segmentation task, which attracted over 140 registered participants from four continents. TopCoW dataset was the first public dataset with voxel-level annotations for CoW's 13 vessel components, made possible by virtual-reality (VR) technology. It was also the first dataset with paired MRA and CTA from the same patients. TopCoW challenge aimed to tackle the CoW characterization problem as a multiclass anatomical segmentation task with an emphasis on topological metrics. The top performing teams managed to segment many CoW components to Dice scores around 90%, but with lower scores for communicating arteries and rare variants. There were also topological mistakes for predictions with high Dice scores. Additional topological analysis revealed further areas for improvement in detecting certain CoW components and matching CoW variant's topology accurately. TopCoW represented a first attempt at benchmarking the CoW anatomical segmentation task for MRA and CTA, both morphologically and topologically.
Abstract:Visible-infrared person re-identification (VI-ReID) aims to retrieve images of the same persons captured by visible (VIS) and infrared (IR) cameras. Existing VI-ReID methods ignore high-order structure information of features while being relatively difficult to learn a reasonable common feature space due to the large modality discrepancy between VIS and IR images. To address the above problems, we propose a novel high-order structure based middle-feature learning network (HOS-Net) for effective VI-ReID. Specifically, we first leverage a short- and long-range feature extraction (SLE) module to effectively exploit both short-range and long-range features. Then, we propose a high-order structure learning (HSL) module to successfully model the high-order relationship across different local features of each person image based on a whitened hypergraph network.This greatly alleviates model collapse and enhances feature representations. Finally, we develop a common feature space learning (CFL) module to learn a discriminative and reasonable common feature space based on middle features generated by aligning features from different modalities and ranges. In particular, a modality-range identity-center contrastive (MRIC) loss is proposed to reduce the distances between the VIS, IR, and middle features, smoothing the training process. Extensive experiments on the SYSU-MM01, RegDB, and LLCM datasets show that our HOS-Net achieves superior state-of-the-art performance. Our code is available at \url{https://github.com/Jaulaucoeng/HOS-Net}.